Syracuse Algebra Seminar October 2021

non-nait NON - 7.00 Background on Matrix Factorizations. Def. Let S be a regular back ring and f & S. A matrix factorization of f is a pair of square matrices (9,74) with entries in S s.t. $\varphi = f \cdot I_n = 2 \varphi$ Ex Let $f = x^3 + y^4 \in S = K[x, y]$ $\begin{bmatrix} X - y^{2} \\ y^{2} \\ X^{2} \end{bmatrix} \cdot \begin{bmatrix} x^{2} \\ y^{2} \\ x^{2} \end{bmatrix} = \begin{bmatrix} x^{3} + y^{4} \\ 0 \end{bmatrix} = \frac{74 \varphi}{x^{3} + y^{4}}$ Ŷ So, (4, 24) is a 2x2 matrix factorization of x3+ y4 Let R = S/(F) be the hypersurface ring defined by f. MFs and R-modules. Let (9,74) be a MF of f of size n. Since 42f = f. In, $f(S^{n}) = q^{2}f(S^{n}) = q(2S^{n}) = Imq$ =) f Kills 6K4= 5"/

For a MF (4, 24)
• Cokel is an R-module
$$\begin{cases} So, Cokel is an MCM R-module \\ MCM R-module \\ (same for 6k 24) \end{cases}$$

Conversely. Let M be any MCM R-module. By above, $pd_SM = 1$, so F

Mistosian

$$f.M=0$$

 $so, maths M=0$
 $gamma = gamma =$

$$(A_n) \times^2 + y^{n+1} \qquad n \ge 1$$

 $(D_n) \times^2 y + y^{n-1} \qquad n \ge 4$
 $(E_c) \times^3 + y^4$
 $(E_7) \times^3 + \times y^3$
 $(E_8) \times^3 + y^5$

• Ris a simple hypersurface singularity if the set of proper ideals of S $c(f) = \sum I \subseteq S | f \in I^2$

is finite.

• R has finite CM type if there are, up to iso, only finitely many indecomposable MCM R-modules.

The Thin

- · classifies hyprings of fCMt Rep. Theory of local rings
- · Connects w/ simple singularities Deformations in Alg. Geom

Notice: R has finite (M type) there are only faitely many iso classes of MFs of f.

n ._

Key Ingredient – to contribution made by Knörrer
Skew Group Algebra.
$$CharK \neq 2$$

• $R = S/(f)$

•
$$R^{\#} = S[Z] (P+Z^2)$$
 double branched cover of R
• \overline{J} and automorphism $\sigma: R^{\#} \rightarrow R^{\#}$
 $\sigma(s) = s$ for all se S
 $\sigma(z) = -z$

Can form the skew group algebra
$$R^{\#}[\sigma]$$

• $R^{\#}[\sigma] = formal sums$ $a + b\sigma$, $a, b \in R^{\#}$
• multiplication given by: $a, b \in R^{\#}$
 $(a \cdot \sigma i) \cdot (b \cdot \sigma j) = a \sigma i(b) \cdot \sigma i + j$

d-fold Matrix Factorizations. (or d-fold) Def. feS, dZR. A matrix factorization of f with d factors

is:
$$(q_{1}, q_{2}, ..., q_{d})$$
 uxn matrices us entries in S s.t.
 $q_{1}q_{2} \cdots q_{d} = f \cdot I_{n}$
Notice: $q_{1}q_{1+1} \cdots q_{d}q_{1} \cdots q_{1-1} = f \cdot I_{n}$ for all *i*.
Exi $f = xyz \in K[x,y,z]$. Then
 (x, y, z) is a 3-fold MF d $f = xyz$
 I Size $|x|$
Assume wek:
 $Exi f = x^{3} + y^{4} \in K[x,y]$. $w^{3} = 1$, a primitive 3^{rd} not of I .
 $\left(\begin{pmatrix} y^{2} \circ x \\ x & y \end{pmatrix}, \begin{pmatrix} y \circ wx \\ wx & y^{2} \end{pmatrix}, \begin{pmatrix} y \circ w^{2}x \\ wx & y^{2} \end{pmatrix}, \begin{pmatrix} y & y & y^{2} \\ wx & y^{2} \end{pmatrix}, \begin{pmatrix} y & y &$

.

Form R#E0] as before. Then,

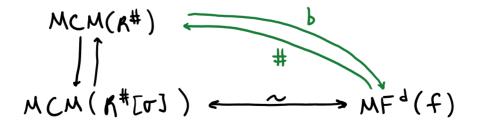
$$MF^{d}(f) \longrightarrow MCM(R^{\#}[v]) = \begin{cases} R^{\#}[v] - modules \\ f \cdot g \cdot free over S \end{cases}$$

category of J-fold MFs
of f

Idea behind the equivalence:

$$N \in MCM(R^{\#}[T]) \longrightarrow N \in M(M(R^{\#}), N f.g. free over S.$$

Let $9:N \rightarrow N$ be mult by $Z = N N$.
Pick S-basis for N and write 9 as a matrix w / entries in S
Then, $9^{d} = mult$ by $Z^{d} = -f \cdot In$
 $\Rightarrow get a matrix factorization of $f \approx (9, 9, ..., 9)$.$



and b do not form an equivalence but: Let NEMCM ($R^{\#}$) and $X \in MF^{d}(f)$.

-1

. .

$$N^{b\#} \cong \bigoplus_{i=0}^{d-1} (\sigma^{i})^{*} N \qquad \qquad X^{\#b} \cong \bigoplus_{i=0}^{d-1} \mathcal{T}^{i}(X)$$
where $(\sigma^{i})^{*} N$ is the module obtained by restricting
scalars along $\sigma^{i}: R^{\#} \longrightarrow R^{\#}$
 $\mathcal{T}^{i}(\mathcal{Y}_{i}, \mathcal{Y}_{a}, ..., \mathcal{Y}_{d}) = (\mathcal{Y}_{i}, \mathcal{Y}_{i+1}, ..., \mathcal{Y}_{d}, \mathcal{Y}_{i}, ..., \mathcal{Y}_{i-1})$