Branched covers and matrix factorizations

Route 81 Conference - November 13, 2021

Tim Tribone

Syracuse University

Let *S* be a regular local ring and *f ∈ S* a non-zero non-unit.

- The **hypersurface ring** defined by f : $R = S/(f)$
- The **double branched cover** of *R*

$$
R: \qquad R^{\sharp} = S[\![z]\!]/(f + z^2)
$$

Motivating Question:

How does the representation theory of *R* compare to the representation theory of *R ♯* ?

We will also assume that *S* is complete over an algebraically closed field of characteristic \neq 2.

MCM modules

• A finitely generated module *M* over a local ring *A* is called maximal Cohen-Macaulay (MCM) if

 $depth_A(M) = dim A$.

For this talk: An *R*-module *M* is MCM *⇐⇒ M* has projective dimension 1 over *S*. (resp. an *R ♯* $(\text{resp. over } S\llbracket z \rrbracket)$

• A local ring *A* is said to have finite Cohen-Macaulay representation type if there are, up to isomorphism, only finitely many indecomposable MCM *A*-modules.

Theorem (Knörrer)

R has finite CM type *⇐⇒ R [♯]* has finite CM type.

A **matrix factorization** of *f* is a pair of $n \times n$ matrices (φ, ψ) with entries in *S* such that

$$
\varphi\psi = f \cdot I_n = \psi\varphi
$$

Example

Let $f = x^3 + y^4$ (*x −y* 2 *y* 2 *x* 2 $\int (x^2 + y^2)$ *−y* 2 *x* \setminus = $\int x^3 + y^4$ 0 0 $x^3 + y^4$ \setminus Given a matrix factorization (*φ, ψ*) of *f*, both cok *φ* and cok *ψ* are MCM *R*-modules.

$$
0\to S^n\xrightarrow{\varphi}S^n\to \mathsf{cok}\,\varphi\to 0
$$

The converse also holds and we have:

Theorem (Eisenbud) The correspondence

 $(\varphi, \psi) \longleftrightarrow \operatorname{cok} \varphi$

defines a bijection between reduced matrix factorizations of *f* and MCM *R*-modules with no free summands.

Knörrer's Theorem

The skew group algebra *R ♯* [*σ*]:

- \cdot *R* = *S*/(*f*)
- $R^{\sharp} = S[\![z]\!]/(f + z^2)$
- $\cdot \sigma \in$ Aut (R^{\sharp}) which fixes *S*, $\sigma(z) = -z$

R[‡][*σ*] has elements of the form *a* + *b* ⋅ *σ* for *a*, *b* ∈ *R*[‡] with multiplication:

$$
(a \cdot \sigma^i) \cdot (b \cdot \sigma^j) = a \sigma^i(b) \cdot \sigma^{i+j}
$$

Theorem (Knörrer 1987)

1. There is an equivalence of categories

 $\mathsf{MF}(f) \approx \mathcal{MCM}(R^{\sharp}[\sigma]) = \left\{R^{\sharp}[\sigma] \textrm{-modules which are MCM over } R^{\sharp}\right\}.$

2. *R* has finite CM type if and only if *R [♯]* has finite CM type

 $R = S/(f)$ is called a **simple hypersurface singularity** if there exists finitely many proper ideals $I \subsetneq S$ such that $f \in I^2$.

Theorem (Knörrer, Buchweitz-Greuel-Schreyer 1987) Let $S = k[x, y, z_2, \ldots, z_r]$ where $k = \overline{k}$ and char $k = 0$. Then the following are equivalent.

- 1. *R* is a simple hypersurface singularity
- 2. *R* has finite Cohen-Macaulay type

3.
$$
R \cong k[[x, y, z_2, ..., z_r]]/(g)
$$
 where *g* is one of the following
\n(A_n) $x^2 + y^{n+1} + z_2^2 + \cdots + z_r^2$ $n \ge 1$,
\n(D_n) $x^2y + y^{n-1} + z_2^2 + \cdots + z_r^2$ $n \ge 4$,
\n(E_6) $x^3 + y^4 + z_2^2 + \cdots + z_r^2$
\n(E_7) $x^3 + xy^3 + z_2^2 + \cdots + z_r^2$
\n(E_8) $x^3 + y^5 + z_2^2 + \cdots + z_r^2$

[Matrix factorizations with more](#page-7-0) [factors](#page-7-0)

Matrix factorizations with *d ≥* 2 factors

Definition A matrix factorization of *f* with *d* factors is:

An ordered tuple of $n \times n$ matrices $(\varphi_1, \varphi_2, \ldots, \varphi_d)$ with entries in S such that

$$
\varphi_1\varphi_2\cdots\varphi_d=f\cdot l_n
$$

 $($ Notice that $\varphi_i \varphi_{i+1} \cdots \varphi_d \varphi_1 \cdots \varphi_{i-1} = f \cdot I_n$ for all *i*)

 $\mathsf{MF}^d(f) =$ category of d-fold factorizations of f

Examples

$$
\cdot \ \big(x,y,z \big) \in \mathsf{MF}^3 \big(xyz \big)
$$

• Let
$$
f = x^3 + y^4
$$
 and $\omega^3 = 1$.

$$
\left(\begin{pmatrix}y^2 & 0 & x \\ x & y & 0 \\ 0 & x & y\end{pmatrix}, \begin{pmatrix}y & 0 & \omega x \\ \omega x & y & 0 \\ 0 & \omega x & y^2\end{pmatrix}, \begin{pmatrix}y & 0 & \omega^2 x \\ \omega^2 x & y^2 & 0 \\ 0 & \omega^2 x & y\end{pmatrix}\right) \in MF^3(f)
$$

d-fold Branched Cover

Theorem (T.)

Let d ≥ 2 *and assume char k does not divide d.*

- \cdot *R* = *S*/(*f*)
- \cdot $R^{\sharp} = S[\![z]\!]/(f + z^d) \text{the } d\text{-fold branched cover of } R$
- $\cdot \sigma : R^{\sharp} \to R^{\sharp}$ fixes S and $\sigma(z) = \omega z$ ($\omega^{d} = 1$)

There is an equivalence of categories

$$
\mathsf{MF}^d(f) \approx \mathsf{MCM}(R^{\sharp}[\sigma]) = \left\{ R^{\sharp}[\sigma] \textrm{-modules which are MCM over } R^{\sharp} \right\}
$$

Idea behind the equivalence

N ∈ MCM(*R*[‡][*σ*]) \implies *N* is an *R*[‡]-module and a free *S*-module. Let *φ* : *N → N* be multiplication by *z*. Then

$$
\varphi^d = -f \cdot 1_N
$$

This gives us a d-MF of the form $\approx (\varphi, \varphi, \ldots, \varphi) \in \mathsf{MF}^d(f)$ 8

$MCM(R^{\sharp})$ and $MF^d(f)$

• Notice that this construction applies to *N ∈* MCM(*R ♯*). Get a functor

$$
\begin{array}{ccc}\n\mathsf{MCM}(R^{\sharp}) & \xrightarrow{\mathsf{b}} & \mathsf{MF}^{d}(f) \\
\mathsf{N} & \xrightarrow{\mathsf{N}^{b}} & \approx (\varphi, \varphi, \dots, \varphi)\n\end{array}
$$

• We also have a functor

$$
MCM(R^{\sharp}) \longleftarrow \xrightarrow{\sharp} \text{MF}^{d}(f)
$$
\n
$$
X^{\sharp} \longleftarrow X
$$

* These do not form an equivalence.

Proposition Let *N* be an MCM R^{\sharp} -module and $X \in MF^d(f)$. Then

$$
N^{\flat\sharp} \cong \bigoplus_{i=0}^{d-1} (\sigma^i)^* N \quad \text{and} \quad X^{\sharp\flat} \cong \bigoplus_{i=0}^{d-1} T^i(X)
$$

where

- (*σ i*) *[∗]N* is the module obtained by restriction scalars along $\sigma^i: R^\sharp \to R^\sharp$
- \cdot $T^{i}(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{d}) = (\varphi_{i}, \varphi_{i+1}, \ldots, \varphi_{d}, \varphi_{1}, \ldots, \varphi_{i-1})$

Say that *f* has finite d-MF type if there are, up to isomorphism, only finitely many indecomposable matrix factorizations *f* with *d* factors.

Theorem (Leuschke, T.)

f has finite *d*-MF type if and only if the *d*-fold branched cover $R^{\sharp} = S[\![z]\!]/(f + z^d)$ has finite CM type.

Corollary

Let $S = k[\![y, z_2, \ldots, z_r]\!]$ where $k = \overline{k}$, char $k = 0$, and $d > 2$. Then f has finite *d*-MF type if and only if *f* and *d* are one of the following:

(A₁)
$$
y^2 + z_2^2 + \cdots + z_r^2
$$
 for any $d > 2$,
\n(A₂) $y^3 + z_2^2 + \cdots + z_r^2$ for $d = 3, 4, 5$
\n(A₃) $y^4 + z_2^2 + \cdots + z_r^2$ for $d = 3$
\n(A₄) $y^5 + z_2^2 + \cdots + z_r^2$ for $d = 3$

Thank you!