Branched covers and matrix factorizations

Route 81 Conference - November 13, 2021

Tim Tribone

Syracuse University

Let S be a regular local ring and $f \in S$ a non-zero non-unit.

- The hypersurface ring defined by f: R = S/(f)
- The double branched cover of *R*: $R^{\sharp} = S[[z]]/(f + z^2)$

$$\kappa = 3/(1)$$

Motivating Question:

How does the representation theory of *R* compare to the representation theory of R^{\sharp} ?

We will also assume that S is complete over an algebraically closed field of characteristic \neq 2.

MCM modules

• A finitely generated module *M* over a local ring *A* is called **maximal Cohen-Macaulay** (MCM) if

 $\operatorname{depth}_A(M) = \operatorname{dim} A.$

For this talk:An R-module M is MCM(resp. an R^{\sharp} -module)(resp. over S[[z]])

• A local ring A is said to have **finite Cohen-Macaulay representation type** if there are, up to isomorphism, only finitely many indecomposable MCM A-modules.

Theorem (Knörrer)

R has finite CM type $\iff R^{\sharp}$ has finite CM type.

A matrix factorization of f is a pair of $n \times n$ matrices (φ, ψ) with entries in S such that

$$\varphi\psi=f\cdot\mathsf{I}_n=\psi\varphi$$

Example

Let $f = x^3 + y^4$ $\begin{pmatrix} x & -y^2 \\ y^2 & x^2 \end{pmatrix} \begin{pmatrix} x^2 & y^2 \\ -y^2 & x \end{pmatrix} = \begin{pmatrix} x^3 + y^4 & 0 \\ 0 & x^3 + y^4 \end{pmatrix}$ Given a matrix factorization (φ, ψ) of f, both $\operatorname{cok} \varphi$ and $\operatorname{cok} \psi$ are MCM R-modules.

$$0 \to S^n \xrightarrow{\varphi} S^n \to \operatorname{cok} \varphi \to 0$$

The converse also holds and we have:

Theorem (Eisenbud) The correspondence

 $(\varphi, \psi) \longleftrightarrow \operatorname{cok} \varphi$

defines a bijection between **reduced** matrix factorizations of *f* and MCM *R*-modules with no free summands.

Knörrer's Theorem

The skew group algebra $R^{\sharp}[\sigma]$:

- R = S/(f)
- $R^{\sharp} = S[[z]]/(f+z^2)$
- $\sigma \in \operatorname{Aut}(R^{\sharp})$ which fixes S, $\sigma(z) = -z$

 $R^{\sharp}[\sigma]$ has elements of the form $a + b \cdot \sigma$ for $a, b \in R^{\sharp}$ with multiplication:

$$(a \cdot \sigma^i) \cdot (b \cdot \sigma^j) = a\sigma^i(b) \cdot \sigma^{i+j}$$

Theorem (Knörrer 1987)

1. There is an equivalence of categories

 $\mathsf{MF}(f) \approx \mathsf{MCM}(\mathsf{R}^{\sharp}[\sigma]) = \left\{ \mathsf{R}^{\sharp}[\sigma] \text{-modules which are MCM over } \mathsf{R}^{\sharp} \right\}$

2. *R* has finite CM type if and only if R^{\sharp} has finite CM type

Simple Singularities

R = S/(f) is called a **simple hypersurface singularity** if there exists finitely many proper ideals $I \subsetneq S$ such that $f \in I^2$.

Theorem (Knörrer, Buchweitz-Greuel-Schreyer 1987) Let $S = \mathbf{k}[\![x, y, z_2, ..., z_r]\!]$ where $\mathbf{k} = \overline{\mathbf{k}}$ and char $\mathbf{k} = 0$. Then the following are equivalent.

- 1. *R* is a simple hypersurface singularity
- 2. *R* has finite Cohen-Macaulay type

3.
$$R \cong \mathbf{k}[\![x, y, z_2, \dots, z_r]\!]/(g)$$
 where g is one of the following
(A_n) $x^2 + y^{n+1} + z_2^2 + \dots + z_r^2$ $n \ge 1$,
(D_n) $x^2y + y^{n-1} + z_2^2 + \dots + z_r^2$ $n \ge 4$,
(E₆) $x^3 + y^4 + z_2^2 + \dots + z_r^2$
(E₇) $x^3 + xy^3 + z_2^2 + \dots + z_r^2$
(E₈) $x^3 + y^5 + z_2^2 + \dots + z_r^2$

Matrix factorizations with more factors

Matrix factorizations with $d \ge 2$ factors

Definition A matrix factorization of *f* with *d* factors is:

An ordered tuple of $n \times n$ matrices $(\varphi_1, \varphi_2, \dots, \varphi_d)$ with entries in S such that

$$\varphi_1\varphi_2\cdots\varphi_d=f\cdot I_n$$

(Notice that $\varphi_i \varphi_{i+1} \cdots \varphi_d \varphi_1 \cdots \varphi_{i-1} = f \cdot I_n$ for all *i*)

 $MF^{d}(f) =$ category of d-fold factorizations of f

Examples

•
$$(x, y, z) \in MF^3(xyz)$$

• Let
$$f = x^3 + y^4$$
 and $\omega^3 = 1$.

$$\left(\begin{pmatrix} y^2 & 0 & x \\ x & y & 0 \\ 0 & x & y \end{pmatrix}, \begin{pmatrix} y & 0 & \omega x \\ \omega x & y & 0 \\ 0 & \omega x & y^2 \end{pmatrix}, \begin{pmatrix} y & 0 & \omega^2 x \\ \omega^2 x & y^2 & 0 \\ 0 & \omega^2 x & y \end{pmatrix}\right) \in \mathsf{MF}^3(f)$$

d-fold Branched Cover

Theorem (T.)

Let $d \ge 2$ and assume char k does not divide d.

- R = S/(f)
- $R^{\sharp} = S[[z]]/(f + z^d)$ the d-fold branched cover of R
- $\sigma: R^{\sharp} \to R^{\sharp}$ fixes S and $\sigma(z) = \omega z$ ($\omega^d = 1$)

There is an equivalence of categories

$$MF^{d}(f) \approx MCM(R^{\sharp}[\sigma]) = \left\{ R^{\sharp}[\sigma] \text{-}modules which are MCM over } R^{\sharp} \right\}$$

Idea behind the equivalence

 $N \in MCM(R^{\sharp}[\sigma]) \implies N$ is an R^{\sharp} -module and a free S-module. Let $\varphi : N \to N$ be multiplication by z. Then

$$\varphi^d = -f \cdot \mathbf{1}_N$$

This gives us a d-MF of the form $\approx (\varphi, \varphi, \dots, \varphi) \in MF^{d}(f)$

$MCM(R^{\sharp})$ and $MF^{d}(f)$

• Notice that this construction applies to $N \in MCM(R^{\sharp})$. Get a functor

$$MCM(R^{\sharp}) \xrightarrow{\flat} MF^{d}(f)$$
$$N \longmapsto N^{\flat} \approx (\varphi, \varphi, \dots, \varphi)$$

• We also have a functor

* These do not form an equivalence.

Proposition Let N be an MCM R^{\sharp} -module and $X \in MF^{d}(f)$. Then

$$N^{b\sharp} \cong \bigoplus_{i=0}^{d-1} (\sigma^i)^* N$$
 and $X^{\sharp\flat} \cong \bigoplus_{i=0}^{d-1} T^i(X)$

where

- + $(\sigma^i)^*N$ is the module obtained by restriction scalars along $\sigma^i: R^{\sharp} \to R^{\sharp}$
- $T^{i}(\varphi_{1},\varphi_{2},\ldots,\varphi_{d}) = (\varphi_{i},\varphi_{i+1},\ldots,\varphi_{d},\varphi_{1},\ldots,\varphi_{i-1})$

Say that *f* has **finite d-MF type** if there are, up to isomorphism, only finitely many indecomposable matrix factorizations *f* with *d* factors.

Theorem (Leuschke, T.)

f has finite *d*-MF type if and only if the *d*-fold branched cover $R^{\sharp} = S[[z]]/(f + z^d)$ has finite CM type.

Corollary

Let $S = \mathbf{k}[\![y, z_2, \dots, z_r]\!]$ where $\mathbf{k} = \overline{\mathbf{k}}$, char $\mathbf{k} = 0$, and d > 2. Then f has finite d-MF type if and only if f and d are one of the following:

(A₁)
$$y^2 + z_2^2 + \dots + z_r^2$$
 for any $d > 2$,
(A₂) $y^3 + z_2^2 + \dots + z_r^2$ for $d = 3, 4, 5$
(A₃) $y^4 + z_2^2 + \dots + z_r^2$ for $d = 3$
(A₄) $y^5 + z_2^2 + \dots + z_r^2$ for $d = 3$

Thank you!