Abstract

Let S be a regular local ring and f a non-zero non-invertible element of S. In this thesis, we
study the notion of a matrix factorization of f with d > 2 factors, that is, we consider tuples
of square matrices (¢1, 2, ..., ®q), with entries in S, such that their product is f times an
identity matrix of the appropriate size. These objects have been studied thoroughly in the
case d = 2 and were originally introduced by Eisenbud in his study of free resolutions of
modules over hypersurface rings. Many of the results given in this thesis are extensions of
well-known results in the d = 2 case while others give new and unexpected properties which
only arise when d > 2.

First we investigate the structure of the category of matrix factorizations with d > 2
factors in Chapter 2. We show that the stable category of d-fold matrix factorizations is
naturally triangulated and we give an explicit formula for the relevant suspension functor.
In Chapters 3 and 4 we give two different module-theoretic descriptions of this category,
which turn out to be equivalent under mild assumptions, extending results of Solberg and
Knorrer to the case of d > 2 factors.

The primary motivation for Chapter 4 is a theorem due to Knorrer which states that the
category of 2-fold matrix factorizations of f has finite representation type if and only if the
same is true of f + 2% € S[z], where z is an indeterminate. We consider an analogue of this
statement in the case of the equation f+z¢ € S[z], d > 2. In particular, we show that there
are, up to isomorphism, only finitely many indecomposable d-fold matrix factorizations of f if
and only if the hypersurface ring defined by f + 2¢ has finite Cohen-Macaulay representation
type.

In Chapter 5, we provide a generalization of Eisenbud’s fundamental theorem on the

connection between matrix factorizations of f and maximal Cohen-Macaulay modules over



the hypersurface ring defined by f. Namely, we give a correspondence between d-fold matrix
factorizations of f and sequences of d — 1 surjective homomorphisms between the aforemen-
tioned modules.

Finally, Chapter 6 contains a formula for a tensor product of d-fold matrix factorizations

in the sense of Yoshino as well as some criteria for decomposability of the construction.
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1 | Introduction

Let (S,n) be a regular local ring, that is, a commutative Noetherian ring that has a unique
maximal ideal n which is minimally generated by precisely dim .S elements. The primary
goal of the five chapters of this thesis is to study the notion of a d-fold matrix factorization
of f where f is a fixed element of S and d > 2 is an arbitrary integer. In the case d = 2, these
objects were introduced by Eisenbud in 1980 [Eis80] to study free resolutions of modules over
hypersurface rings. Since then, the d = 2 case has been studied thoroughly in commutative
algebra and related fields including Knot Theory and Physics. Many of the results given
here are extensions of well-known results in the d = 2 case while others highlight new and

unexpected properties that only arise when d > 2.

1.1 Summary of results

The first three chapters, after this introduction, are presented in order of increasing strength
of assumptions needed on the regular ring S. The main results of Chapters 2 and 3 hold
for an arbitrary regular local ring. Completeness of the ring S is needed in Chapter 3 in
order to conclude that the Krull-Remak-Schmidt theorem holds in MF%(f), the category of
matrix factorizations with d factors, and throughout the entirety of Chapter 4. Furthermore,
Chapter 4 requires that the residue field of S is algebraically closed of characteristic not
dividing the fixed integer d. The majority of the results in the last chapter are stated in the
case that S is a power series ring over a field which contains all the roots of %41 depending
on the parity of d.

In Chapter 2 we investigate the category of matrix factorizations with d factors. We show

that there is a suitable analogue for exact sequences in the additive category MF%(f) with



especially nice properties. Namely, there is an exact structure which has enough projectives,
enough injectives, and the classes of injective and projective objects coincide. In other words,
MFdS( f) is a Frobenius category. One consequence that we will discuss is that the induced
stable category is naturally triangulated. We go on to describe, explicitly, the syzygy and
cosyzygy operations in this category therefore also describing the suspension functor on the
stable category.

Chapters 3 and 4 give module-theoretic descriptions of MFdS( f). Chapter 3 contains a
direct extension of a result of Solberg [Sol89, Proposition 3.1] to the case of d > 2 factors while
Chapter 4 extends results of Knorrer from [Kno87]. In particular, both Solberg and Knéorrer
identify the category of 2-fold matrix factorizations with a subcategory of modules over a
non-commutative ring and we extend both of these results to the case of matrix factorizations
with d > 2 factors. Chapter 4 also considers representation-theoretic questions about the
category of d-fold matrix factorizations. The main result in this direction, which is joint with
G. Leuschke, is Theorem 4.3.7 which can be viewed as an analogue of [Kn687, Corollary 2.8].
We show that the category of d-fold matrix factorizations is representation finite if and only
if a certain hypersurface ring, called the d-fold branched cover, has finite Cohen-Macaulay
type.

In Chapter 5, we generalize Eisenbud’s fundamental result on the connection between
matrix factorizations and maximal Cohen-Macaulay modules [Eis80, Corollary 6.3] to the
case of factorizations with d > 2 factors. The main result of this chapter, which is an elabo-
ration on the key idea identified by Hopkins in his thesis [Hop21, Theorem 3.14], shows that
there is a correspondence between d-fold matrix factorizations of f and chains of surjections
of length d—1 between maximal Cohen-Macaulay modules over the hypersurface ring defined
by f.

Chapter 6 is dedicated to a d-fold version of a construction originally described by Knorrer
in [Kno87]. Namely, we define a tensor product of d-fold matrix factorizations and investigate

some of its basic properties using [Yos98] as a guide. The construction we give is based on



[BES17, Proposition 2.1] and [HUB91, Theorem 1.2].
Finally, we include a short appendix which contains technical details about idempotents

in the category of d-fold matrix factorizations.

1.2 Matrix factorizations

In this section, we collect the main definitions and notations as well as some key results that
we will use throughout. We also recall a fundamental theorem of Eisenbud, and a few of its

corollaries, regarding matrix factorizations and maximal Cohen-Macaulay modules.

Definition 1.2.1. Let S be a regular local ring, f a non-zero non-unit in S, and d > 2 an
integer. A matriz factorization of f with d factors is a d-tuple of homomorphisms between
finitely generated free S-modules of the same rank, (o1 : Fo — Fi,p9 1 F5 — Fy ... @q ¢

Fy — F}), such that

<P1%02"'<Pd:f‘1F1-

Depending on the context, we may omit the free S-modules in the notation and simply write
(o1, 92, .., ¢q). If the free S-modules Fi, ..., F,; are of rank n, we say (¢1,¢2,...,¢q) is a

matrix factorization of size n.
It will be convenient to adopt the following notational conventions.

Notation 1.2.2. The letter d will always be an integer indicating the number of factors in
a matrix factorization. When d is clear from context, all indices are taken modulo d unless
otherwise specified. More specifically, let ¢ # j € Zg = {1,2,...,d} and let Ay, As,..., Ay
be symbols indexed over Z,. Let i and j be integer representatives of 4, j within the range

0< f,j < d. The notation A;A;;;---A; will be taken to mean

AiAiJrl ce AjflAj if 5

IA
o

AiAiy - AgAy - Ay Ay ifi >



We follow a similar convention for indexing a decreasing list of symbols over Zj.

Definition 1.2.3. Let (A, m) be a local ring and M # 0 a finitely generated A-module.
A sequence of elements x1,zs,...,2. € m is called an M-reqular sequence if x; is a non-
zerodivisor on M and, for each ¢ > 2, x; is a non-zerodivisor on M/(z1,za,...,2;—1)M. The
well-defined constant, depth 4 (M), which keeps track of the length of the longest M-regular
sequence, is called the depth of M. A non-zero finitely generated A-module M is called
mazximal Cohen-Macaulay (MCM) if depth (M) = dim A, where dim A denotes the Krull

dimension of M. The ring A is called Cohen-Macaulay if it is MCM as a module over itself.

Our first observation is that matrix factorizations of f with d factors encode MCM

modules over the hypersurface ring R = S/(f).

Lemma 1.2.4. Let S be a reqular local ring and f a non-zero non-unit in S. Let (o1 : Fy —
Fiopo: F3 = By .o pq 0 FY — Fy) be a matriz factorization of f with d > 2 factors. For

any k € Zq,

(1) okPrt1- k-1 = f-1p, and

(i1) if cok i # 0, then cok gy is an MCM R-module.

Proof. (i) We proceed by induction on d > 2. For the case d = 2, we simply need to show
that @i = f - 1p implies Yo = f - 1g. Suppose (p : G — F,¢ : F — @) is a matrix
factorization with 2 factors, that is, suppose ¢ = f-1g. Since f is a non-zero element
in the domain S, it follows that both ¢ and v are injective. Canceling ¢ on the left of
the equation o = f - =@ - f, we find Yo = f - 15.

Now, assume d > 2 and that the statement holds for matrix factorizations with fewer
than d factors. Let k € Z4 and notice that, by viewing the composition ¢gpri1 :

Fyi2 — [}, as a single homomorphism, the (d — 1)-tuple

((1017 P2y oy Ph—1y PePh+1, PE425 - - - 790d)

4



is a matrix factorization of f with d—1 factors. By induction, it follows that pxpri1 - @r_1 =

f1p,.

(ii) Let k € Zy. By (i), we have that prgi1 - pr—1 = f-1g,. In particular, f-cok ¢, =0,
that is, cok ¢y # 0 is an R-module. Also, as in (i), the homomorphism ¢y is injective

since f € S is non-zero. Thus, we have a short exact sequence

0 —— Fpyy —2 B, s cok g, — 0,

which implies that pdg(cok ¢x) < 1. By the Auslander-Buchsbaum formula, we have
that
depth(cok ¢r) = dim(S) — pdg(cok ¢x) > dim(S) — 1 = dim(R).

That is, cok ¢y is an MCM R-module.
O

Definition 1.2.5. Let S be a regular local ring and f a non-zero non-unit in S. Let
X=(p1:Fy—Fi,...;04: Fy > Fy)and X' = (¢} : F5 — F|,..., ¢, : F| — F) be matrix

factorizations of f with d > 2 factors.

(i) A morphism of matriz factorizations between X and X’ is a d-tuple of S-module

homomorphisms, o = (aq, ag, ..., ay), making each square of the following diagram
commute:

J ARG AR A CHNY ) SN SN )

bl b

F! LR F R T F A Fl.
Composition of morphisms is defined component-wise, that is, if « = (aq,...,aq) :
X = X"and 8= (61,...,0q4) : X' = X are morphisms of matrix factorizations, then

aofB = (a1f1,a2fs,...,qfq) : X' — X”. The matrix factorizations X and X' are
isomorphic if there exists a morphism a = (aq,...,qq) : X — X’ such that ay is an

isomorphism for each k € Z,.



(ii) Let MF%(f) denote the category of matrix factorizations of f with d factors with
morphisms as above. The additive structure on MF%( f) is given by the direct sum of

X and X"

Yo x — o1 0O w2 0 wq O

0 & 0 vy 0 vy

(iii) We define functors T7 : MF$(f) — MF%(f), j € Zg, given by

T/ (p1, 02, - 0d) = (Pj1,@j42s - -+ Pj-1,Pj)

and

Tj(ah a2, ... ,Oéd) = (aj+17 Ajroy ..oy Oj_1, aj)
for any (a1, az, ..., aq) € Homypa ) (X, X'). We refer to T = T' as the shift functor
on MF4(f).

Definition 1.2.6. Let S be a regular local ring with maximal ideal n and let f be a non-zero

non-unit in S. Set R = S/(f) and fix d > 2.

(i) Let MCM(R) denote the full subcategory of the category of finitely generated R-

modules consisting of maximal Cohen-Macaulay R-modules.
(ii) An R-module M is stable if it has no direct summands isomorphic to R.

(i) A matrix factorization X = (g1, @2,...,pa4) is called stable if cok ¢y is a stable R-

module for all & € Z,.
(iv) A homomorphism between free S-modules ¢ : G — F'is called minimal if Im ¢ C nF.

v) A matrix factorization (o1, s, . .., @q) € MF%(f) is called reduced if oy, is minimal for
S

all k € Zy.

(vi) For an R-module M, let syzh (M) denote the reduced first syzygy of M, that is, syzk (M)

is the stable part of an arbitrary first syzygy of M over R.
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(vii) A non-zero matrix factorization X € MF%(f) is indecomposable if X = X'@ X" implies

X' =0or X" =0.

The following theorem, due to Eisenbud, is the foundation for the theory of matrix

factorizations with d = 2 factors.

Theorem 1.2.7 ([Eis80], Corollary 6.3). Let S be a regular local ring, f € S a non-zero
non-unit, and R = S/(f). The functor cok : MF%(f) — MCM(R), given by

(¢,v) € MF%(f) — cok p € MCM(R),
induces a one-to-one correspondence between reduced matrix factorizations with 2 factors and
stable MCM R-modules.

We set aside two consequences of Eisenbud’s theorem that will be needed later.

Corollary 1.2.8 ([Eis80]). Let S be a reqular local ring, f a non-zero non-unit in S, and
set R=S/(f).

(i) For any MCM R-module M, there exists a matriz factorization (¢,v) € MF%(f) such

that ¢ 1s minimal and cok ¢ = M.

(i1) A matriz factorization (p,v) € MF%(f) is reduced if and only if it is stable. In this

case, syzn(cok ) = cokv and syzk(cok 1) = cok .

We will see in Section 2.2.2 that only one direction of (ii) holds when d > 2. Finally,
we state another observation, also made by Eisenbud, that will help us identify matrix

factorizations with more than two factors.

Lemma 1.2.9 ([Eis80], Corollary 5.4). Let S be a regular local ring and f a non-zero non-
unit in S. Suppose A: G — F and B : F — G are homomorphisms of finitely generated free
S-modules such that AB = f-1p and BA = f-1g. Then rank F' = rank G.



Proof. Since BA = f-1¢, the map A is injective. Since AB = f-1p, we have that f-cok A = 0,

that is, cok A is a torsion S-module. After tensoring the short exact sequence

0 s G AL F s cokA —— 0

with the quotient field of S, we find that rankg F' = rankg G. O]



2 | Exact Structure

In this chapter we show that there is a natural choice of an exact structure on the category
MF4( f) which induces the structure of a triangulated category on the stable category MF%( f)
defined below. We also give explicit formulas for the syzygy and cosyzygy operations and
the cone of a morphism.

First, we will recall the axioms that define an exact category. The axioms and definitions
below follow the presentation given in [Biih10] and we refer the reader to this paper for more

information on exact categories.

2.1 Exact categories

~

Let A be an additive category. A pair of composable morphisms A’ —— A —%— A" is
called a kernel-cokernel pair if i is a kernel of p and p is a cokernel of i. Given a collection
of kernel-cokernel pairs, £, we call a morphism i : A” — A an admissible monomorphism if

there exists a morphism p : A — A” such that A —~—s A —2 5 A” is an element of £.

Dually, a morphism p : A — A” is an admissible epimorphism is there exists a morphism
1: A" — A such that their composition is in £. We will indicate admissible monomorphisms
and admissible epimorphisms by the arrows — and — respectively.

An ezact structure on A is a class £ of kernel-cokernel pairs which is closed under iso-

morphisms and such that the following axioms hold:
(E0) The identity morphism 1x is an admissible monomorphism for all X € A.
(E0°P) The identity morphism 1y is an admissible epimorphism for all X € A.

(E1) Admissible monomorphisms are closed under composition.

9



(E1°P) Admissible epimorphisms are closed under composition.

(E2) The push-out of an admissible monomorphism X — Y and an arbitrary morphism

X — X' exists and induces an admissible monomorphism X’ — Y’ as in the diagram

X —Y
X' sy Y

(E2°P) The pull-back of an admissible epimorphism X’ — Y’ and an arbitrary morphism

Y — Y’ exists and induces an admissible epimorphism X — Y as in the diagram

X n Y

ol

X —s Y.

Given an additive category A and a class & satisfying these axioms, the pair (A, £) is called

an exact category.

2.2 Short exact sequences of matrix factorizations

Let S be a regular local ring, f € S a non-zero non-unit, set R = S/(f), and fix an integer
d > 2. For the rest of this section, let X = (p1 : [y — Fi,...,0q: FI — Fy), X" = (¢] :
Fy, — F|,....,¢, : F| — F}), and X" = (¢} : F/ — F/,...,;¢ : F/' — F) be matrix

factorizations in MF%(f).

Definition 2.2.1. Suppose we have a pair of morphisms o = (aq,...,a4) : X — X" and

B=(Bi,...,Bq) : X' = X in MF¢(f). Then the composition

y X —2 5 X7

10



is called a short exact sequence of matriz factorizations if the sequence

B

N N Xk oo N
0 /Fk. /Fk /Fk‘ /O

is a short exact sequence of free S-modules for each k € Z,.
Lemma 2.2.2. A short exact sequence of matrix factorizations is a kernel-cokernel pair in
MF4(f).

Proof. Let X' ¥ 4 X —“ 4 X" beashort exact sequence of matrix factorizations. First

we show that [ is the kernel of a. By definition, we have that a8 = 0. Suppose g : ¥ — X
is another morphism such that ag = 0, where Y = (¢1 : Go — Gy,...,0q : G1 — Gy) €

MF4(f). Let k € Zy. We have the following diagram of free S-modules

where the bottom row is exact. Since [ is the kernel of a4, there exists a unique S-
homomorphism gy : G, — F}, such that g, = gx. 1t suffices to show that § = (g1, Ga, . - -, Ja) :
Y — X' is a morphism of matrix factorizations since each gy, k € Zg4, is uniquely determined.

That is, we need to show that the diagram

Gt L Gy,

l§k+1 lﬁk
/

/ Pk /
Fk+1 Fk

commutes for all k € Z,. Note that gpr = ©rgr+1 and @rfrr1 = Bry), since g and [ are

morphisms in MF4(f). Then Bigitbr = gitbr = Prgrt1 = @aBri1Ge+1 = Brp)gr+1 and since

.. 1s injective, we can cancel it on the left to conclude that gpvr = ¢} gr+1 as desired. Hence,
J 9 PrIk+

11



g is the unique morphism such that

Bog= (5191, B49a)
= (gla"'agd)

This completes the proof that £ is a kernel of a. The proof that « is a cokernel of 3 is

similar. O

Let &, denote the class of short exact sequences of matrix factorizations in MF$(f). The
first four axioms of an exact category are satisfied by the pair (MF$(f),&;) directly from
the definitions. The axioms (E2) and (E2°?) also hold, which we will show below. Before we

do, we need to know more about the form of the admissible morphisms in (MF%(f), &,).

Lemma 2.2.3. Let v = (71,...,74) : X = X" be a morphism of matriz factorizations.
1. v is an admissible epimorphism if and only if the S-homomorphisms vi,...,7vq are
surjections.
2. v is an admissible monomorphism if and only if the S-homomorphisms 7y, ...,vq are

split injections.

Proof. We prove only (2) as the proof of (1) is similar. Suppose 7 is an admissible monomor-
phism. Then there exists an admissible epimorphism 7© = (my, 72, ...,7m) : X — X” such

that X’ - X —%% X" is a short exact sequence of matrix factorizations. In partic-

ular,

Tk Tk
0 > I > Iy, > F) > 0

is a short exact sequence of S-modules for each k € Z,. Since F} is free, this sequence is
split and therefore 4 is a split injection.
Conversely, suppose the homomorphisms 71, ..., 74 are each split injections. For k € Zg,

set F}' = cok~y, and 7 @ Fy — [} the natural projection map. Notice that F] is a free

12



S-module of rank equal to rank Fj, — rank F}. Now, for each k € Z,, there exists a map

¢y @ Fiy1 — Fj such that the following diagram with split exact rows commutes:

T

71
0 > F > By > Y > 0
Z ¢a vu
~ ~ v
Yd Td
0 > F > Iy > > 0
Pa_1 Pd—1 P
~ ~ ~
b P2 Lol
~ ~ v
2 2
0 > I > Fy > Y > 0
o} 1 ol

B
71 1
0 > F > By > Y > 0.

In particular, there exists ¢, : F|" — Fj such that mt; = 1. The splitting allows us to

1

compute the composition along the right most column:

n. N

Ol ol = T1p1p2 - path
=f-mt

=r- 1F1”-

Since the free modules FY', Fy/, ..., F] are all of the same rank, we have that X" = (¢ :

FY = Fl..... @2 F{ = F}) € MF4(f) and

T1yeensTd
X >X( )»X”

is a short exact sequence of matrix factorizations.

]

Lemma 2.2.3 indicates that not every monomorphism of matrix factorizations is an ad-

missible monomorphism. The simplest example of this arises when d = 2.

13



Example 2.2.4. Suppose (p : G — F,¢ : F — G) € MF5(f) with cokt # 0. Then the
tuple (¢, 1¢) forms a morphism between the matrix factorizations (¢, ¥) — (f-1g, 1¢). This
morphism is a monomorphism, in the sense that it can be cancelled on the left, but it is not
admissible since the cokernel of 1 is not a free S-module.

The same is true of epimorphisms, that is, there are epimorphisms that are not admissible.
For (¢, %) € MF%(f) with cok ¢ # 0, the tuple (15, 1) forms a morphism between the matrix
factorizations (f - 1p, 1p) = (p,¥). If (a,b) o (1p,%) = (a’, V) o (1,%) for some morphisms
(a,b),(a’,b'), then a = o’ and byp = V). We can pre-compose both sides of the second
equation with ¢ to get b- f =b'- f, hence b = '. So, (1, %) can be cancelled on the right
but is not admissible epimorphism since ¢ is not surjective.

Actually, further inspection of these examples shows they are both monomorphisms and
both epimorphisms but neither is admissible of either type. In particular, neither is an
isomorphism. In Abelian category, a monomorphism which is also an epimorphism must be
an isomorphism. Similar examples can be constructed for all d > 2 and therefore we note

that the category MF%(f) is not Abelian for any d > 2.

Proposition 2.2.5. The collection E; of short exact sequences of matrixz factorizations in

MFL(f) satisfies the azioms (E2) and (E2°P) .

Proof. We will show that (E2) holds. The proof that (E2°P) is satisfied is similar. Suppose

we have a diagram in MF%(f)
X215y

lﬁ (2.2.1)
X/

where Y = (¢1 : Go = G1,...,%q : G1 = Gg), 8= (P1,---,P4), and ¢ = (q1,...,qq). Let

k € Z,. We may take the push-out of the injection ¢, and the map [, which yields the

diagram
0 > Fk KL > Gk > Cquk — 0
lﬁk lpk H
0 » Fl 2 P, s cok g, — 0.

14



We make the following observations from this diagram: Since the morphism ¢ is an admissible
monomorphism, the map ¢ is a split injection. Hence, cok g, is a free S-module. It follows
that the bottom sequence also splits and so Py is free with rankg Py, = rankg F} +rankg G —
rankg F. This also implies that ay is a split injection. Since k£ was arbitrary, this yields
d free S-modules Pi, P, ..., P;, each of the same rank, and d-tuples o = («, ..., qaq4) and

b= (pla"'apd)'

Next, let k € Z4 and consider the diagram

[

(67

F]é—k>Pk

akflwgc_l

There is a unique homomorphism xx_1 : P. — P_1 depicted above since Py is the pushout

of g, and B and

Ph—1Vk—1Gk = Ph—1Qk—1Pk—1 = Qp—1Bk—1Pk—1 = Oékﬂ@%qﬁk-

In particular, the map yx_; is given by

Xe—1((ar, b)) = ar—19p 1 (ar) + pr—1¥r—1(br) = (@), (ar), Yr-1(bk)) € Pr1,

for any (ag,br) € F] @ Gg. In other words, xx—; is the map induced by the direct sum
©)_1 @ Yr_1 on the quotients P, — P;_;. These maps link together to form a sequence of
compositions

Xd Xd—1 X2 X1
P > Py > Py > P

From the explicit description of x; we have that xix2 - x4 = f-1p,. Since the free S-modules

Py, ..., Py are all of the same rank, it follows that Y’ = (x1: P, = Py, -+ ,xa: PL — Py) is
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a matrix factorization of f with d factors.

It is not hard to see that o : X’ — Y’ and p : Y — Y’ form morphisms of matrix
factorizations and that these morphisms render (2.2.1) a commutative square. As we showed
above, the map «y, is a split injection for all k£ € Z4. Hence, « is an admissible monomorphism
by Lemma 2.2.3. To finish the proof, it suffices to check the necessary universal property

which we omit as it is also a straightforward computation. O
Corollary 2.2.6. The pair (MF(f),Eq) is an exact category. O

With the exact structure on MF$(f) fixed, we will often omit reference to &;. We proceed
now with the main goal of this section: to show that the exact category MF%(f) is a Frobenius

category. First, we recall the necessary definitions which can also be found in [Biih10].

2.2.1 Projective and injective objects

An object in an exact category (A, £) is called projective, respectively injective, if it satisfies
the usual lifting property with respect to admissible epimorphisms, respectively admissible
monomorphisms. The pair (A4, £) is said to have enough projectives if for every object X € A,
there is an admissible epimorphism P — X with P projective. Dually, (A, &) has enough
injectives if for every object X € A, there is an admissible monomorphism X — [ with
I injective. The exact category (A, E) is said to be a Frobenius category if it has enough
projectives, enough injectives, and the classes of projective objects and injective objects

coincide.

Definition 2.2.7. For each ¢ € Zg, let P; denote the matrix factorization of size 1 whose
i-th component is multiplication by f on S while the rest are the identity on S. In other

words, P; is given by the composition

where S, = S for each k € Z;. We also set P = @iezd P;.
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Lemma 2.2.8. Let X € MFL(f) and j € Zy. Then X is projective (respectively injective)

if and only if T?(X) is projective (respectively injective).

Proof. Suppose X is projective and j € Z4. Let a = (ay,...,aq) : X' — X” be an
admissible epimorphism and let p = (py,...,pq) : T9(X) — X” be any morphism. Then
we have morphisms T/ (a) : T9(X') — T7(X") and T (p) : X — T 7(X"). The
characterization of admissible epimorphisms in Lemma 2.2.3 implies that T77(«a) is also
an admissible epimorphism. Since X is projective, there exists ¢ = (q1,¢2,...,q4) : X —
T—7(X’) such that T/ (a)q = T ?(p). Applying T7 we find that oT7(q) = p implying that

T7(X) is projective. The proof of the converse and both directions regarding injectivity are

similar. O
Lemma 2.2.9. The matriz factorizations Py, P, ..., Py are projective and injective objects
in MF%(f).

Proof. Directly from the definition we see that T9(P;) = P;_; for any i,j € Z4. Therefore,
because of Lemma 2.2.8, it suffices to show that P; is both projective and injective. We
start by showing that P is projective.

Suppose o = (a, ..., qq) : X — X" is an admissible epimorphism and p = (p1,...,pq) :

P1 — X" is an arbitrary morphism. We need to complete the diagram

Py
q lp (2.2.2)
L
X 2 X"

with a morphism ¢ making the triangle commute. One component of this diagram is the

following diagram of free S-modules




Since S is free and « is surjective, there exists a map ¢, : S — F} such that a;q; = p;. We
can use this map to construct a morphism of matrix factorizations P; — X which makes

(2.2.2) commute. Let g = (q1, Y2903 ©aq1, Y3 Laqi, - - -, vaq1). The fact that ¢ forms a

morphism P; — X can be seen in the following diagram of S-modules

S L g —1 5...—1 539 L 9 LS
lql l@dql l@?“@dql l¢2@3"'§0d(11 l(h
S LN M SR & BN ) N SN £ R AN )
Finally,
aq = (1qr, 2P -+ Paqi, - - -, CaPaqi)
= (p1, 90,2/ T SOZOélfh, T 7<Pi1/0416h)
= (1,95 ap1s -, Pap1)
= (p17p27 HE 7pd)
=P
which implies that P; is projective.
In order to show that P; is an injective matrix factorization, let 5 = (f5,...,04) :
X’ — X be an admissible monomorphism and a = (ay,...,aq) : X’ — P; be an arbitrary

morphism. We need to complete the diagram

B

X' >—> X
Py

Since 3 is an admissible monomorphism, each component Sy is split. In particular, there

exists a map t : Fiy — F} such that t8y = 1p,. This splitting allows us to build the morphism

b= (agt@h - - @l ast, asty, ... astwy -l 1) : X = Py
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and this morphism satisfies b5 = a. O]

In Lemma 2.3.2, we will see that Py, Ps,..., Py are the only indecomposable projective
(respectively injective) matrix factorizations up to isomorphism.

The next step is to show that MFdS( f) has enough projectives and enough injectives.
Along the way, we construct the syzygy and cosyzygy of a matrix factorization and give

explicit formulas for each.

2.2.2 The syzygy of a matrix factorization

In this section, we construct short exact sequences

K » s P » X and X — T ——» K’

with P projective and I injective for any X € MF%(f). Then we give explicit formula for

the resulting syzygy K and cosyzygy K’ of X.

Construction 2.2.10. Let X = (p1 : Fy — F},..., 04 : F1 — F;) € MF%(f) be of size n.
Set F\k = @f;ll Fy.;. For each k € Z,4, define S-homomorphisms Dy, : Fyyq @ﬁkﬂ — Fk@ﬁk

and Dll{: : Fk+1 D ﬁk+1 — I, P ﬁk by

Dk(ak—i-la Ag42,---,0k-1, Clk) = (f(lk7 k41, - - - 7%—1)

and

Dy (i1, Qpy2y - oy @1, ag) = (Qk, fQpi1, Qhray - oy Qp_1)
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for all a; € F,i € Zq. In other words, Dy and D, are the d x d block matrices

0 0 ... 0 f-lp 0 0 ... 0 1g

lp,, O ... 0 0 flp, 0O ... 0 0

D=1 0 1g,, ... 0 0 and Dy = 0 lp, - 0 0
0 0 - lg, 0 0 0 - 1g, O

Set P(X) = (D1, Ds,...,Dq) and I(X) = (D}, D5, ..., D). Then the d-tuples P(X) and
I(X) form matrix factorizations of f both isomorphic to @¢_, Pr.

For each i, k € Zg4, define a homomorphism ;% : F; — F}, given by

CkPrht1 - Pi—apio1 1 F k.

Then, for each k € Zg, define ;7 : B, — F. and =X F — F, by

O (k1 Ao, - ap—1) = Y O (a;)

i#k
and
E?(ak) = (0()li+1)k(ak)7 0()1(;+2)k<ak)7 <. 70()12—1)k<ak)) :
Let k € Z4 and consider the following diagram:
= 62(4-1 = p?—o—l
0 —— Fry1 — b1 @ Fre > Fry > 0
o le l@k (2.2.3)
Z eX —~ X
0 ” Fk u ” Fk EBFk u ” Fk > 0
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X
where pif = (1 o OF ) and e = “|. The rows are split exact sequences of free S-

1~
F,
modules and one can check that right most square commutes by recalling that 0,41y = O

for i # k and @i0441x = f-1p,. Thus, there is an induced map €y, : ﬁk-}-l — .ﬁk as depicted.
Since the rows are split, {2, can be computed by using the splitting, that is, {2 = 7 Dgegiq

where 7, : [}, © ﬁk — ﬁk is projection onto ﬁk In particular,

O (Qhgas O3, - - 5 A1, Q) = T Dy (Qrro; Grgs, - - -, Gp—1, Qk)
= mp Dy, <— E 9(k+1)i(ai)7 Q425 -+ -5 A1, ak)
i£k+1
= Tk (fak, - E e(k—i—l)i(ai); A2, - ,ak1>
i£k+1
= <— E 0(k+1)i(ai)7 A2, - - - ,ak1)
i£k+1

and therefore we can represent the components of €2 as

O+ o) oy - —Orine—) —Orinm
150 0 0 . 0 0
o 0 15, 0 . 0 0
15y
0 0 0 - 0 0
0 0 0 e 1p 0

Since k was arbitrary, we have a d-tuple (€21, ..., Q) which has the property that
Q- Qg =mD1Dy- - Dgery = fmer = [+ g,

Since the free S-modules ﬁl, ﬁg, - ,F\d are all of the same rank, it follows that (;,...,€y) €

d . . . . .
MEF§(f). We denote this matrix factorization by Qypa (s (X) and refer to it as the syzygy of

21



X. Combining the diagrams (2.2.3) for all k£ € Z; we have a short exact sequence
Qnpa () (X) —— P(X) —= X (2.2.4)

where p = (p1,p2,...,pq) and € = (€1,€2,...,€4).
Similarly, we have a matrix factorization Q ., 5 (X) = (Q7,95,...,8y), the cosyzygy of
S

X, and a short exact sequence of matrix factorizations induced by the commutative diagrams

A ~ nX ~
1 kt-1
0 —— Fryp —% Fopy @ Frpy — Fyy —— 0

l‘ﬂk lD; Q; (2.2.5)

A} ~ ¥ B¢
0 >Fk )Fk@Fk )Fk >0,
1p,
for all k € Z,4, where 0 = (_Eif 1 ﬁk)’ A = . The induced short exact sequence
=
is
A n _
X — (X)) —>» QMF%U)(X), (2.2.6)

where 1 = (1, M2, ...,m4) and A = (Aq, Ag, ..., Ag). Finally, we can represent the components

of 2, by
0 0 -+ 0 0 —Buan
1Fs 0 0 0 —O(kt2)k
0 0 1., 0 0 —Ors3
0 0 o Ip, 0 —Buon
0 0 - 0 1p, —bOuw

Example 2.2.11. Let (¢,9) € MF5(f). Then

Qupz () (9, 0) = (=¥, —p) Z (1, ) = T(p, 7))
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and

Qw2 () (9 9) = (=0, =9) = (¥, 0) = T(p, ).

In particular, both Qypz s (—) and QMF2 )(—) are isomorphic to the shift functor when

d = 2. In this case, (¢, ) is reduced if and only if Qg2 (¢, ¥) (respectively QMF2 ((p, )

is reduced. However, for X € MF%(f) with d > 2, neither Qpipz () (X) nor Qo 2(f) (X) will

be reduced. For instance, if X = (1 : Fy — Fy, @0 : F3 — Fy, 031 [} — Fy) € MF%(f) is of

size n, then

—P2 —P2p3 —¥3 —P3¥1 —P1 —P1P2
Q1\/1Fig(f) (X) = ) )
1p, 0 1p, 0 1p, 0
_ 0 —paps3 0 —p3p1 0 —p1p
QMF3 f)(X) = ’ )
lp,  —s lp, —1 I,  —2

which are both of size 2n.

One can also write down the short exact sequence of matrix factorizations defining

Qe (p)(X). For example, in the case d = 3 we have

0 —p1 —p192 0 —p3  —p3p1 0 —p2  —pap3 0
J/ IFQ 0 J/ 1F1 0 J/ 1F3 0 J/
E @ Fy o — oK F, @ Fy
—p1 —p1p2 —p3  —p301 —p2  —p2p3 —p1 —p1p2
g, 0 1y, 0 gy 0 g 0
0 1y 0 1m, 0 1r 0 Lry

e ok TFS@FI@FZ T2>F2@F3€BF1 TFl@FZ@FS

<1F1 1 501502> <1F3 ¥3 @3@1) <1F2 P2 s02503> <1F1 1 901502)

F £ Fy £ Fy 2 F
| | | |
0 0 0 0.
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Another observation that can be made from these formulas is that, for each k € Zs, we

have an isomorphism of R-modules

TPk+1 T Pr+1Pk+2
cok >~ cok(ppi10nra) = syzp(cok op) ® R™

15, ., 0

for some my; > 0. A similar statement is true for Q_,
MFg(f)

(X) and more generally we have

the following proposition.

Proposition 2.2.12. Let X € MF%(f) be of sizen. Let Qe () (X) and €

MF () (X) be the

matriz factorizations constructed in 2.2.10. Then, for each k € Zg,
cok(Q) = syzp(cok @) ® R™ 22 cok(€2)

where my, = n — pr(cok ).

Proof. Let k € Zy. The diagram (2.2.3) induces the diagram

0 0 0
0 — ﬁkﬂ LN L, y cok Q) —— 0

L
S
L
S
L
S

Pk

o
-
A
ol
a
S}
.
AS)
ol
o

with exact rows and columns. The right most column displays cok 25, as a (not necessarily

reduced) syzygy of cok ¢y over R as desired.
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Alternatively, we can see from the explicit formulas for 2; and €2, that
cok ), = cok 0(),i+1),C = cok €2, .

Now, recall that 0 1)k = Prt1Prt2 " - Pr—1. Since (¢x, Opi1)k) is a matrix factorization with
2 factors, we have that cok(fg41y,) = syzg(cok ¢r) ® R™ for some my > 0. In particular,

my = n — pgr(cok @) by the uniqueness of minimal free resolutions over R. O

2.2.3 Frobenius structure

We note that since the matrix factorizations P(X) = I(X) = @le P are projective and
injective by Lemma 2.2.9, the sequences (2.2.4) and (2.2.6) imply that MF%(f) has enough

projectives and enough injectives. Additionally, we have the following.
Proposition 2.2.13. An object X € MF%(f) is projective if and only if it is injective.

Proof. Let X € MF4(f). If X is projective, (2.2.4) implies that X is a summand of the
injective matrix factorization P(X) and therefore is injective. Conversely, if X is injective,

(2.2.6) implies it is a summand of the projective I(X). O

We have therefore established our original goal of this section.
Theorem 2.2.14. The category MF$(f) is a Frobenius category. O

For matrix factorizations X, X’ € MF%(f), let I(X, X’) denote the set of morphisms X
to X’ that factor through an injective (equivalently a projective) matrix factorization. The
stable category ME%(f) is formed by taking the same objects as MF%(f) and morphisms

given by the quotient

A consequence of Theorem 2.2.14 is that MF%(f) carries the structure of a triangulated

category with suspension functor given by €2 Hap88, p. 1.2]. We call a morphism

ng(f)(—) [
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(a1, a9,...,aq) + X — X' null-homotopic if there exist S-homomorphisms s; : F; — F]_,,
] € Zg, such that

_ X' X
Q= E ei(i—k)si—k+19(i—k+1)z‘
k€Zq

for each i € Zy. We denote by HMF%(f) the homotopy category of matriz factorizations

which has the same objects as MF%(f) and, for any X, X’ € MF%(f), has morphisms
HOHIHMF%(f) (X, X,) = HomMFg(f) (X, X/)/ ~,

where ~ is the equivalence relation o ~ o’ if and only if & — &/ is null-homotopic.

Proposition 2.2.15. The stable category MES(f) and the homotopy category HMFL(f)

cotncide.

Proof. Let X, X' € MF%(f). It suffices to show that a morphism o : X — X’ is null-
homotopic if and only if it factors through the morphism A\* : X — I(X). The proof relies
on an explicit description of morphisms I(X) — X’. Indeed, if 5 : I(X) — X' is any

morphism, then, for any k,j € Zy4, we have a commutative diagram

D;€+ 2 D;€+ 3 D;c 1
=~ - ~ - +
Fryj1© Frpjo1 — Frj2® Frpj2 SERE

lﬁk-}—j—l lﬁk+j—2
! F/

Phtj—2 . 90;e+j—3 . ‘P;CH
kj—1 7 Pktj—-2 T

. D ~
> Fioy1 @ By —— Fr o Fy,

lBkJrl lﬁk
(10/

\ / k \ /
> Fl, > .

Recall that, for any ¢ € Zy and (aps1, apso, ..., a-1,07) € Fpiq @ EH, we have that

Dé((aﬁ—‘rl? Qp42,...,00-1, (Zg)) = (Clg, faf-f-la Qpy2, - - . 70%—1)-

In other words, D cyclically permutes each components of Fy; & F\g+1 but only scales Fy,q

by f.
Now, let k,j € Zq with j # 1. It follows that the maps Dy, D} ,,,..., Dy, o are the

identity on Fj,1; and therefore so is the product Dy Dy, -+ Dy ; . Write the components
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of f5; as
Bi = <5u‘ Bii+1) Biirz) - Bi(il))

for some B;(i1s) : Firs — Fj. By the above observation, we have that
Brktd) = PePht* Phrj-2Bleri—0kts) = ki1 Bk i—1(k1s)
by the commutativity of the outer most rectangle of the diagram above. Therefore,

X/

Pr = (92((;_1)5@_1% Briern) OnganyBiksnykr) -+ ek(k_g)ﬁ(k_z)(k_l))-

Now, if B : I(X) — X' is such that SA\X = a, then

ar = By = — Z eli((,/lg_i)ﬁ(lcfi)(kfi+l)9()](g_i+1)k

1€ZLq

for any k € Zq4. This says precisely that « is null-homotopic via the maps {—08(_1);}jez,
Conversely, if a is null-homotopic via maps s; : F; — Fj_;, then it is not hard to see

that the maps

Ve = (6‘?&;1)816 Sk+1 «92((;C+1)5k+2 s 9?&;1)8]{;_1> )

for k € Zg, form a morphism v = (v1,72, .. .,7a) : I(X) — X’ such that a = yA\¥. ]

To end this section, we give explicit formula for the mapping cone of a morphism. Suppose
o : X — X’ is a morphism in MF(f). The mapping cone of « is the matrix factorization

Cla) = (A1, As,...,Ay) where
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o0 0 - 0 o

0 0 0 0 —0%, 1

0 1p., 0 - 0 —6 . N
Ak: Rt . ()];+2)k :F’::+1€BF]€+1—>F]::@F]€

0 0 1Fk+3 0 _9(k+3)k

0 0 R _Q(Ji_l)k

for all £ € Z4. The cone of « fits into a commutative diagram

X2 1(X) s 0o, (X)
MFL(f)

[ |

X' 1 Cla) 2 Q7 ., . (X)

MF%(f)
where pr. = (0 lg | @ = , and B = . for all £ € Z4, and p =

(pla"'apd)aq: (q17"'7Qd)7 and ﬁ = (ﬁla"'aﬁd)-

Remark 2.2.16. Let X € MF%(f). By tensoring with R = S/(f), which we denote here by

0 = 0 ®g R, one can associate to X an infinite chain of free R-modules:

%) — © - ® - Pd—1 P - ® - @
s Fy —— F, — 5 Fy yooos — 2y oy 1y By —Ls ..

In the case d = 2, this chain is an acyclic complex and, by truncating appropriately, it forms
a free resolution of cok ¢ over R (or of cok ¢y). However, if d > 2, this chain is not acyclic.
In fact, it is not a complex. Instead, it is precisely an acyclic d-complez (see [IKM17]). With
this perspective in mind, it is likely that the formulas given in this section can be obtained

as lifted versions of the ones found in [IKM17, Section 2].
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2.3 More on the structure of MF%(f)

For a matrix factorization X = (¢1 : F» — Fi,...,¢q : F1 — Fy), we study its syzygy,
Quipa () (X) = (@1, s, ..., Qq), defined in Section 2.2.2. We start with a fundamental result
regarding the relationship between projective summands in MFdS( f) and free summands in
MCM(R). Recall that a matrix factorization X € MF&(f) is stable if, for all k € Zg, the

MCM R-module cok ¢, has no direct summands isomorphic to R.

Proposition 2.3.1. Let X = (¢1,...,94) € MFL(f) and set M; = cokg; for all i € Zg.

Then X has a projective summand isomorphic to P; if and only if M; has a free R-summand.

Proof. The statement holds when d = 2 (for instance see [Yos90, p. 7.5]). So, assume d > 3.
One direction is immediate: If X = X' @® P; for some X' = (¢},...,¢))) € MF4(f) and
i € Zg, then M; = cok ¢} @ R.

A matrix factorization Y is a summand of X if and only if 77(Y) is a summand of
T7(X) for any j € Zg. Therefore, for the converse, we may assume i = 1. That is, assume
M, = M & R for some MCM R-module M. By Proposition 1.2.8 (i), there exists (¢ : G —
F,¢: F — G) € MF%(f), with ¢ minimal, such that cok ¢ = M. Then

e 0

o f
00— G S Fae s s M, s 0

is a minimal free resolution of M; over S. Thus, there exists isomorphisms « and § and a

commutative diagram
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0 > Fy < > Fh s M, s 0
s 2 H
00— G SapS™ —— FpSaps™ > M, > 0
@ 0 0
0o f o0
0 0 1g,

for some m > 0. It follows that we have an isomorphism of matrix factorizations in MF%(f):

e 0 0 b0 0

~

(01, 203+ - - @a) of ol.lo1 o

00 1g,) \o 0 f1g,
The isomorphisms « and 3 also give us an isomorphism of matrix factorizations in MF%(f):
X = (a1, 02, - -, Pd-1, QOdOfl)
= (agplﬁ_la 59027 < Pd—1, dea_l)-

Let py : FOESBS™ — Sand py : GHSBHS™ — S be projection onto the middle components

of F&S®S™and G & S @ S™ respectively. Consider the diagram

FoSesm & g 2 o g Sk P e sasm S FaSe s
J{Pl J{P25@2¢3"'9@(11 Jmﬂtp‘ztpg %2@92 ‘/PZ ‘/Pl
g—1 91,y 1y 1,5 1 g ! S.
v 0 0
The two right most squares commute, the first since a8~ = |9 f o | and the second
00 1g,

by construction. Similarly, for £ = 3,4,...,d — 1, the square

Pk
Fry1 —— Iy
p25¢2‘ﬂ3"‘¢k—1‘ﬂkl lp2ﬁ992803'”50k71

s —1 49
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commutes. Since pjap; 8~ = fpy, we have that

o1 =p1f = prapiB7 ' Bpaps -+ pa_1pac

= fpoaBpaps - pa_1pac .

We may cancel f on the left to conclude that the left most square also commutes. Thus, we

have a morphism

X = (049016_1769027 S 790d71790d05_1) — Pl-

We claim that this morphism is an admissible epimorphism. By Lemma 2.2.3, it suffices to
show that each of the vertical maps depicted above are surjective. By the commutativity of

the diagram,

1= (D2Bp203 - - 1) (Prt1Pr42 " - <Pdf1<,0d071)

for each k = 2,3,...,d — 1. Since p; is surjective, this implies pySBpops - - - @y is surjective
for each k = 2,3,...,d — 1 as claimed. Since P; is projective, the admissible epimorphism
X — Py implies that X has a direct summand isomorphic to P;. O]

Corollary 2.3.2.

(i) The objects Py, Pa, ..., Pqa € MFL(f) are the only indecomposable projectives (equiva-

lently injectives) up to isomorphism.

(ii) Let Q be a non-zero projective (equivalently injective) object in MFL(f). Then Q =

.
@Dicz, P for some s; > 0.

(iii) A matriz factorization X € MF%(f) is stable if and only if it has no non-zero projective

direct summands.

Proof. Let Q = (Q1,Qs,...,Q4) € MF4(f) be an indecomposable projective of size n. Then
we have a short exact sequence of the form (2.2.4), and more specifically, @ is a direct

summand of P(Q) = @, Pr. It follows that, for any k € Zg, cok @y, is either 0 or has
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a direct summand isomorphic to R. Since () is non-zero matrix factorization, there exists
J € Zg such that cok@; # 0. Thus, cok@; has a direct summand isomorphic to R. By
Proposition 2.3.1, this implies that () has a direct summand isomorphic to P;. Since @
is indecomposable, we have that () = P;. The statement about indecomposable injectives
follows immediately because of Lemma 2.2.13.

To show (ii), let Q@ = (Q1,Qa,...,Q4) € MF%(f) be an arbitrary projective of size n.
Then, since () is projective, there is an isomorphism of matrix factorizations @iGZd P =
PQ)=Qa QMF%U)(Q). It follows that cok @Q; = R®* for some 0 < s; < n, where s; = 0
means cok ); = 0. Using Proposition 2.3.1, we have that Q = @ P;" as desired.

The third statement follows by combining (i) and Proposition 2.3.1. O

In Chapter 3.1 we will see that if the regular ring S is complete, then the Krull-Remak-
Schmidt Theorem holds in MF‘;( f). However, for an arbitrary regular local ring, Proposition
2.3.1 and Corollary 2.3.2 combine to give us “cancellation” of projective objects without the

full strength of the Krull-Remak-Schmidt Theorem.

Proposition 2.3.3. Let X, X’ € MF4(f) and let Q € MFL(f) be projective. If X & Q =
X'®Q, then X = X' in MFL(f).

Proof. First assume that () is an indecomposable projective, that is, Q = P; for ¢ € Zg.
We claim that that P; € MF%(f) has a local endomorphism ring. To see this, notice that
if (ag,...,0q) € EndMFg(f)(Pi), then ay = ay = --- = 4. Then the map which sends
(aq,0a1,...,0q0) = oy € S forms an isomorphism Endyp 5 (P;) = S. Since idempotents
split in MF%(f) (see A.1), we may apply [LW12, Lemma 1.2] to conclude that P; can be
cancelled. In other words, we have shown that X & P; & X’ @ P; implies that X = X'
Finally, applying 2.3.2(ii) for arbitrary projective @), we may cancel one indecomposable

projective at a time and conclude that X ®Q = X' ®(Q implies that X = X’ as required. [

The exact structure on MF%(f) ensures that Qurpa(p)(X) is stably equivalent to any
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matrix factorization K such that there exists a short exact sequence

where P is projective. This follows from the appropriate version of Schanuel’s Lemma in

MF§(f).
Lemma 2.3.4. (Schanuel’s Lemma) Let X € MF$(f) and suppose

/

/
q p q p
K » s P y X and K s P/ y X

are short exact sequences of matriz factorizations with P and P’ projective. Then P& K' =

KoP. ]

We omit the proof as it follows from [Biith10, Proposition 2.12]. The next Lemma follows

directly from Lemma 2.3.4, Proposition 2.3.3, and the sequences (2.2.4) and (2.2.6).
Lemma 2.3.5. Let X, X' € MF%(f). Then
(i) QMFd (X ®X') = QMFg(f)(X> ©® QMFg(f)(X/)

(ii) Q;mé(f)(X ®X') QKAFd )(X) @QMFd f)(X’)
(iii) Qypa(p(X) (respectively (f)( )) is projective if and only if X is projective.
0

As a consequence, both Qypa s (—) and QMFd )( ) define additive functors from the

stable category MES(f) to itself.

Proposition 2.3.6. Let X € MFL(f) be of size n and P = @', Pi. Then we have isomor-

phisms
(1) Qg () (Qypa ) (X)) = X @ PR,
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(i1) Qyypa ) Qs ) (X)) = X @ PO, and

Proof. Since 2, & (X) is of size (d — 1)n, there is a short exact sequence
S

Qirs (1) Qygpg () (X)) == P —— Oy (X)),

MF§(f)

By applying Schanuel’s lemma to this sequence and the sequence (2.2.6), we find that
Dr () Qe ) (X)) @ P = X @ PO,

We may cancel one copy of P" from both sides by Proposition 2.3.3 to obtain the first
statement. Dually, the second statement follows from the injective version of Schanuel’s
Lemma.

In order to prove (iii), we construct an explicit isomorphism. For each k € Z,; define an

S-homomorphism ay, : ﬁk — Z/T\k by

lpey, 9()i(c+1)(k+2) 9()1(c+1)(k+3) 9()I§+1)(k—1)
0 e Oangss 0 Dhazn-n
Qp = 0 0 1Fk+3

0k—2) (k1)
0 0 . 1p,

where 0])5 = Q;pj1- - Pi—opi—1 for i # j and the identity on Fj for i = j. Notice that each
ay is an isomorphism and, by using the explicit descriptions of €, and €2 in (2.2.10), we

have that the diagram

Fk-i—l — Fk

lak-&-l lak

~ Q- o~
Fry —— F
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commutes for all k € Z,. Hence, we have an isomorphism of matrix factorizations (a1, . .., aq) :

MFE(f)

Remark 2.3.7. In the case d = 2, no projective summands occur in the first two isomor-
phisms of Proposition 2.3.6. This agrees with what we saw in Example 2.2.11 which said

that the syzygy and cosyzygy operations are isomorphic to the shift functor:

for any (¢,v) € MF5(f). From this we can see that all three statements of Proposition 2.3.6
are immediate when d = 2. In particular, the isomorphism in Proposition 2.3.6 (iii) is just
the identity. In contrast, the isomorphism constructed in Proposition 2.3.6 (iii) when d = 3

18

—¥P1 —p1p2 —P3  —P3p1 —P2  —P2p3

1, 0 1p 0 1p, 0
Boly — Mol — = BoO ——— ROk

0 1py 0 1p, 0 1p 0 1py

The next Proposition uses Proposition 2.3.6 to show that each object in MF%( f) has a
projective resolution which is periodic of period at most 2. A projective resolution in this

context is with respect to the exact structure on MF%(f) (see [Biih10, p. 12.1]).

Proposition 2.3.8. Let X € MF%(f) Then X has a projective resolution which is periodic
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with period at most 2:
A I(X) 2L PX) 4 I1(X) X PX) — X.

Proof. Set Q(X) = Qype (5 (X) and Q7 (X) = Q

MFd(f)(X)' Let o : Q(X) — Q7 (X) be the
S

isomorphism constructed in Proposition 2.3.6. Then we have two diagrams

I(X) » P(X) s 1(X)
N - X g (2.3.1)
o NQ(X)/ N Py /

and

P(X )

) > 1(X) > P(X
N - . (2.3.2)
Pz

The middle sequence in (2.3.2) is short exact since we have a commutative diagram

X a"ln

X 2 I(X) 21 (X)
H :
)H( 2L (X)) s 0 (X)

with vertical isomorphisms. The desired resolution follows by splicing together (2.3.1) and

2.3.2), that is, by setting p = eXa~'n¥ and g = \Xp¥. O
U] p

Proposition 2.3.1 and Corollary 2.3.2 give us a clearer picture of the structure of matrix

factorizations and the MCM R-modules they encode.

Proposition 2.3.9. Let X = (¢1,...,¢4) € MFS(f). Then

X2XeP'oPya - aP (2.3.3)

for some stable matriz factorization X = (P1,-..,Pa) and integers s, > 0, k € Zy. The
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integers sy, are uniquely determined and X is unique up to isomorphism.

Proof. For each k € Z;, we may write cok ¢, = M; & R** for a stable MCM R-module
Mj.. The integer s is uniquely determined by cok . By Proposition 2.3.1, X has a
direct summand isomorphic to P;*. Hence, we may write X = X® (@kezd 77;’“) for some
X = (@1,...,$4) € MFL(f). By construction, cok ¢ has no free summands for each k € Z,.
Hence, X is a stable matrix factorization and cok O = My, for each k € Zy.

Suppose we have another decomposition X Y ¢ (EBkeZd P,j’“) By Proposition 2.3.3,

we may cancel the indecomposable projectives and conclude that X Y as desired. O]

Corollary 2.3.10. Let X = (¢y,...,¢4) € MFL(f) of size n. Then
Qrg (X)) QP @ 0 P (2.3.4)

where my, = n—pug(cok i) and Q € MFL(f) is stable. Furthermore, Q) is of size ZZ=1 pr(cok gr)—

n.

Proof. The isomorphism (2.3.4) follows by combining Propositions 2.3.9 and 2.2.12. Let

¢ > 0 be the size of . Since Quipa(p)(X) is of size (d — 1)n, we have that

d d
(d—1)n="~0+ ka ={(+dn — Z,uR(cokwk).
k=1 k=1

Thus, { = Zzzl pr(cok pr) — n. O

Over the hypersurface ring R = S/(f), the reduced syzygy of an indecomposable non-free
MCM R-module is again indecomposable. This is a special case of a theorem of Herzog (see

[LW12, Lemma 9.14]). Proposition 2.3.11 gives an analogous result for matrix factorizations.

Proposition 2.3.11. Let X € MFg(f) be a indecomposable non-projective matrix factor-
ization and let Qype p)(X) = Q@ P be a decomposition of the form (2.3.4). Then € is

indecomposable.
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Proof. First, note that Q # 0. Indeed, if Q was zero, then QMF%(]@) (X) would be projective
and Proposition 2.3.5 would imply that X is projective as well, which is not the case. So,
assume ) = Y; & Y, for some non-zero Y;,Ys € MF%( f). Since Q) is stable, the direct

summands Y; and Y5 are also stable. Then

Do () Ouirg ) (X)) = Qs () () & Qg ) (P)

>~ QO (Y2) ® Q0

MFE(f)

(Y1) © Qs (P).

(f) MF§(f)

For : = 1,2, decompose 2 Y;) 2 U; & P, for some stable U; and projective P;. Now,

MF{§ (f)(
applying Proposition 2.3.6, we have that

X @ pl- 2)"NU1EBU2®P1@P2@QMFd )(P)

where n is the size of X. Since both sides of this isomorphism are decomposed into the form
(2.3.3), we have that U; & Uy =2 X. But X is indecomposable, so one of U; or U; must

be zero. Re-indexing if necessary, we may assume U; = 0. This implies that €2 Y1)

MF§ (f)(

is projective and therefore Y; is projective. However, this is a contradiction since Y; is a

non-zero stable matrix factorization. Hence, € is indecomposable. O

So far, we have refrained from assuming that X is a reduced matrix factorization. On
the other hand, if we do assume that X € MF%(f) is reduced, we obtain slightly stronger

versions of 2.2.12, 2.3.9, 2.3.10, and 2.3.11.

Corollary 2.3.12. Let X € MF%(f) be reduced. Then the following hold.

(i) cok Q, = syzk(cok i) for each k € Zy.
(it) Both X and Qypa p(X) are stable.

1) If X is indecomposable, then ypa (X)) s tndecomposable.
MF§(f)
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Proof. By Corollary 1.2.8(ii), there is a one-to-one correspondence between reduced matrix
factorizations in MF%(f) and stable MCM R-modules. If X = (1,9, ..., p4) € MF%(f) is
reduced, then (@, prr1@rio- - @r_1) is a reduced matrix factorization in MF%( f) for each
k € Z4. Hence, cok gy, is a stable MCM R-module for each k € Z, and cok(¢g10k12** ©r—1)
is its reduced first syzygy. Since, by Proposition 2.2.12, cok € = cok(ppi1@kr2 - Pr-1),
the first statement follows. The second statement follows from Proposition 2.3.1 and the

third follows from the second and Proposition 2.3.11. n
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3 | Endomorphisms of the Projective

(Generator

Let (S,n,k) be a regular local ring, f a non-zero non-unit in S, and d > 2 an integer. In
this chapter, we will show that MF%(f) is equivalent to the category of MCM modules over
a certain non-commutative S-algebra which is finitely generated and free as an S-module.
This extends a result of Solberg [Sol89, Proposition 1.3] for all d > 2. As a consequence

we will conclude that, if S is complete, the Krull-Remak-Schmidt Theorem (KRS) holds in

MFS(f).

3.1 MF%(f) as a category of modules

Recall from Chapter 2 the projective (equivalently injective) matrix factorizations Py, P, . . ., Py,

and their direct sum P = € P;. Our first step is to understand the morphisms from P;

1€2Lqg

to P; for any i,j € Zg.

Definition 3.1.1. For i # j € Zg, let e;; € Homg(S, S)? denote the d-tuple of homomor-
phisms such that the 7+ 1,7 +2,...,7 — 1,72 components are multiplication by f while the

rest are the identity on S. For each ¢ € Zg, let e;; = 1p,, the identity on P;.

For instance, if i € Zg4, the i-th map in e;;—_) is multiplication by f and the rest are
the identity on S while e;_yy; is of the form (f, f,..., f,1,f,..., f, f), where only the i-th

component is the identity on S.

Lemma 3.1.2. For alli,j € Zq, Homyp 4y (P;, Pi) = S - e;. In particular, the morphisms

from P; to P; form a free S-module of rank 1.
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Proof. The morphisms from P; to P; are tuples of the form (aq,...,aq) for some a4, € S.
If (aq,...,0q) € HomMF%(f)(Pi,PZ-), then it is easy to see that a; = a3 = -+ = ay and
SO HomMFg(f)(Pi,Pi) = S - e;. Suppose (aq,...,aq) € HomMFg(f)(Pj,Pi) where 7 # j.
Consider the following diagram, which commutes since (s, . .., ay) is a morphism of matrix

factorizations:

P; . e
l Qit1 o lajﬂ l%‘
P, . .

J—
~
n

—
2\
nn

—_
2\

Ju—
2\
N

~
2\
nn

—_
~

H
4
n
kﬁ
N
n
—
N
-
N
n
—
N
nn
—
4

We conclude that aji1 = ajy0 = -+ = 4, o = oj_1 = -+ = 41, and a; = fagyq.
Thus, each component of the morphism can be rewritten in terms of the element o,y € S.
It follows that (og,...,aq) = ®ii1€;, that is, HOIIIMFdS(f) (P;,P;) is generated by e;; as an
S-module. Since the components of e;; are given by multiplication by non-zero elements of
S, a morphism s - ¢;; = 0 if and only if s = 0. Hence, Homypd 4y (P;,P;) is in fact a free

S-module of rank 1 for all i, j € Zg. ]

Let T' = Endypa ) (P)” where P = @le P;. As S-modules, T' = P Hom(P;, P;)

1,J€ELq
and therefore, Lemma 3.1.2 implies that T' is a free S-module of rank d2. For each pair
i,j € Zg, use the same symbol e;; to denote the image of the generator of Hom(P;, P;)
under the natural inclusion Hom(P;, P;) — I'. The set {e;;}i ez, forms a basis for I' as an

S-module. We record the basic rules for multiplication of the basis elements e;;.
Lemma 3.1.3. The basis elements {e;; }ijen, satisfy the following properties.
(1) eijepq 7 0 if and only if i = q
(ii) €% = ey for alli € Zy
(ii) S0 e = 1r

(’L’U) €ijCii = €45 and €jj€ij = €45 fOT’ all Z,j € Zd
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(
(v) . . fe(i—l)(i—l) ifj=1i—1
i(i—1)€ji =

€j(i—1) otherwise
\

(
, ferni+y J=1+1
(vi) eijeviy =
€(i+1); otherwise

d d
(’UZZ) ( 6“11)) €i; = Gj(jfl) = 6(]‘,1)(3',1) ( 61'(2'1)) fO?" all] € Zd
i=1 i=1

]

Lemma 3.1.4. Let i,j € Zq with i # j. Then e;; can be written as a product of basis

elements of the form eqy_yy. In particular, e;; = e(j11);€(j+2)(j+1) * * * €(i-1)(i-2)Ci(i—1)-
Proof. Let i # j € Zg. Lemma 3.1.3 (vi) implies that, for any ¢ # j € Z,, the element ey_)
can be factored out of ey; on the right

€ej = €(1—1)5€0(¢-1)-

Since ¢ # j, we may apply this equality for £ =i,i — 1,...,j 4+ 2,7 + 1 which gives us the

factorization

Cij = €(i—1)jCi(i—1)

= €(i—2)5€(i—1)(1—2)€Ci(i—1)

= CG+1)5C[+2)(G+1) " E(i—1)(i—2) Ci(i—1)-

The element Zle eiii—1y € I' is of particular interest because of the following.
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Lemma 3.1.5. Let z = Z?Zl ei(i—1y and s > 1 an integer. Write s = dq +r for ¢ > 0 and

0<r<d. Then

In particular, 2¢ = f - 1p.

Proof. If s = 1 there is nothing to prove. Assume the formula holds for s > 1 and consider
2*T1. By induction,
d
Zs+1 = 5. fq Z ei(i—’/‘)
i=1
where s =dg+1r,q>0,and 0 <r <d. If r=d — 1, then, by Lemma 3.1.3,
d d
Z: Z Ci(i—r) = Z e(+)i€iii+1) = f - 1r.
i=1

i=1

Since s = dq + d — 1, we have that s +1 = d(q+ 1). Hence,

d
s+l _ pq+l
2= f1 E €
i=1

as needed. If 0 <r < d—1, then

d d
Z .

Ci(i—r) = Z €i(i—r—1)

i=1 i=1

also by Lemma 3.1.3. In this case,
d
2 = /e Z €i(i—(r+1))
i=1
which completes the induction since s + 1 =dg+ (r+1) with 0 <r +1 < d.

]

Let MCM(I") denote the full subcategory of finitely generated left I-modules which are

free when viewed as S-modules via the inclusion S - 1 C I'.
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Theorem 3.1.6. The categories MCM(T) and MF%(f) are equivalent.

Before the proof of Theorem 3.1.6, we record one consequence which will be of use in
future sections.

Recall that the Krull-Remak-Schmidt Theorem (KRS) holds in an additive category if
each object decomposes into a finite direct sum of indecomposable objects and if this direct
sum decomposition is unique up to isomorphism and permutation of the indecomposable

summands.
Corollary 3.1.7. Assume that S is complete. Then KRS holds in MF%(f).

Proof. 1f S is complete, it is known that KRS holds in the category MCM(I") (for example
see [Aus86, Section 1]). Hence, by Theorem 3.1.6, KRS also holds in MF%(f). O

The rest of this section is dedicated to proving Theorem 3.1.6. We start by defining a
functor # : MCM(T') — MF%(f) using the element z = 27, eii—1) € I'. Let M be a I-
module in MCM(I"). Lemma 3.1.3 (i)-(iii) show that ejq,. .., eqq are orthogonal idempotents

such that e;; + e + - -+ + eqq = 1r. Thus, M decomposes, as an S-module, into
M=enM®@---®egM.

Since M € MCM(I'), each summand e; M is a free S-module. Lemma 3.1.3 (vii) shows that
left multiplication by z € I' defines an S-homomorphism between free S-modules z : e¢;; M —

6(1',1)(1',1)M for all 7 € Zd.

Proposition 3.1.8. Let M € MCM(T"). The d-tuple of S-homomorphisms
(Z : 622M — 611M,Z : 633M — 622M. o, R 611M — eddM)

forms a matrix factorization of f in MFZ( f), where each map is multiplication by z =

Z?:l eii-1) € I'.
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Proof. In light of Lemma 3.1.5, the only piece that needs justification is that each of the free

S-modules involved are of the same rank. To see this, let i € Z,;. The composition

Ld—1

eisM —— eq 1)+ M —— e M
is f times the identity on e; M. Similarly, the composition
z zd-1
e(i+1)(i+1)M — eiM —— 6(¢+1)(¢+1)M

is f times the identity on e 1)4+1)M. Since e; M and e 1)i+1)M are free over S, Lemma

1.2.9 implies that rankg(e; M) = rankg(eqy1)i+1)M). O

Following Proposition 3.1.8, the functor H : MCM(I") — MF%(f) is defined as follows:
H(M) = (2 : epgM — eyyM,....,z : etM — egqM) for any M € MCM(T') and, for a
homomorphism h : M — N in MCM(I'), define H(h) = (h|e;,ms - - - s Blegynr), where hle,
denotes the restriction of h to the S-direct summand e; M. Since h is a I'-homomorphism,

h

e;; maps e; M into e; N. Since multiplication by an element of I' commutes with any I'-
homomorphism, this d-tuple forms a morphism between the matrix factorizations H (M) —

H(N). At this point we can prove that H is both full and faithful.
Proposition 3.1.9. The functor H : MCM(T') — MF%(f) is full and faithful.

Proof. Let M, N € MCM(I"). If H(h) = 0 for some I-homomorphism h : M — N, then

hle,nm = 0 for each i € Z4. But this means that h = @,_, hle,,» = 0 implying that H is

1€ZLq
faithful.
In order to show that H is full, let (aq,...,aq) : H(M) — H(N) be a morphism of matrix

factorizations. So, «; : e;; M — e; N and we have a commutative diagram

e M —— e@i—1)(i—1)M

lai lai_l (3.1.1)

e N —— €(¢—1)(¢—1)N
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for each i € Zy. Let h = @?:1 a; : M — N be the S-homomorphism given by h(m) =
aj(e;nm) + ag(egom) + -+ + ageggm) for all m € M. We claim that h is in fact a I'-
homomorphism and furthermore, H(h) = (a1, ...,aq). The second claim follows from the
first and the definition of H and so our aim is to show that h is a homomorphism of I'-
modules. Since h is an S-homomorphism and I' is a finitely generated free S-module with
basis {e;;}ijez,, we would be done if we showed that e;;h(m) = h(e;;m) for all i,j € Z,4
and m € M. By Lemma 3.1.4, it suffices to show that the elements of the form ej_1) pass
through h since each e;; is a product of elements of this form.

Let i € Zg and m € M. By Lemma 3.1.3(vii), multiplication by z on e; M (respectively
on e;N) coincides with multiplication by the element eiti—1y € I'. Therefore, the diagram
(3.1.1) implies that

Qi1 (ei(i—l)eiim) = €i(i—1) (eiim) .

Since e;(i—1)eim € ei—1)i—1)M, the term on the left hand side is precisely h(e;;—1ym). On

the other hand, since e;h(m) = a;(e;;m), we have that

ei—nh(m) = eig—1)exh(m)

= ei(i—l)ai(eiim>-

Together, we have that e;;_1)h(m) = h(e;;_1ym) as desired. Thus, h is a I-homomorphism

and H is full. O

To show that H is dense, we define a functor F : MF%(f) — MCM(T') which is given by
F(O) = Homypa ) (P, 1), where P = @Y, P;. For a matrix factorization X € MF%(f),
F(X) is a left I'-module by pre-composing any morphism P — X with an element of I'. In
order to show that the image of F does indeed land in MCM(I"), we must show that F(X)
is a free S-module. This requires an explicit description of the morphisms P — X.

Recall that P; is the matrix factorization whose i-th component is multiplication by f

on S while the rest are the identity on S. For k € Zg, let D : S* — S be given by
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Dy(ay,...,aq) = (a1,...,a5_1, fag, Gri1, . .., aq) for any (ai,...,aq) € S Then P = (D, :

St — 84 Dy 84— S4 ... Dy:St— S,

Lemma 3.1.10. Let X = (o1 : Fy — Fy,...,0q: Fy = F;) € MFL(f) and let (ay, s, . .., aq) €
HomMFdS(f)(P,X) = F(X). For each k € Zy, we may write oy = (Oékl Qo - akd) for

some ay; € Homg(S, Fy.). Then, for any j # 0 € Zg,

Ok(k+j) = PrPh+1 """ Ph+j—10(k+5)(k+j) -

Proof. Similar to the proof of Lemma 2.2.15, the formula follows from the following commu-

tative diagram:

Dyyj1 Diyj—2 Diy1 Dy,

S Ty 9 m y 54 y S
Oékﬂi Aftj—1 Af+1 lak
Pk+j—1 Pk+j—2 Pk+1 Pk
Fryj —— Fryja 7o > Py —— Fy.

The commutativity of the outermost rectangle gives us that

Dk Dyy1 -+ Diyj1 = PrPra1*** Prj—10kts-

Since j # 0, the composition DyDy1 - -+ Dyyj_1 is the identity on the (k + j)-th component
of S Therefore, if we compare the (k + j)-th components of the homomorphisms on either

side of the above equality, we find that gy = OrPr+1 " Phtjm1Qktj) (k) as desired. [

Let X = (¢ : Fy = Fy, -+, pq : Fi — F;) € MF%(f) be a matrix factorization. Recall

the homomorphisms 65 : F; — F},, i,k € Zg, which are given by

eii: 1Fk 1=k

CkPrt1 " Pi—apio1 1 F# k.
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For each (¢1,...,9q4) € @?:1 F;, we associate a d-tuple of S-homomorphisms

d
0% (g1, .., 94) = ((92(191 092 - ekngd>)

k=1

Here 6% g; is being identified with its image in Homg(S, F},) under the natural isomorphism

F), = Homg(S, Fy). When X is clear from context, we will omit the superscripts.

Lemma 3.1.11. Let X = (@1 : Fy — Fy, -+ ,pq: Iy — Fy) € MFL(f). ThenO(gi,...,g4) €
Homypq () (P, X) for any (g1,...,94) € D¢ | F,. Furthermore, the map 6 : @, F; —

Homypq ) (P, X) is an isomorphism of S-modules.

Proof. First, we show that 0(gi, ..., g4) as defined is in fact a morphism of matrix factoriza-

tions between P and X. What needs to be shown is the commutativity of the diagram
gd —2ry g
<0(k+1)191 O(k+1)292 - 0(k+1)d9d> <9k191 Or2g2 - 9kd9d>

Pk
Fry1 —— Iy,

for all k € Zg. Notice that ©r0(r1)x = CePrr1Pr42 - Pu—1 = f - 15, = fOr and @011y =
Oy; for all i # k. Therefore, we have that

Pk (9(k+1)191 9(k+1)dgd):(9k191 oo fOrgr - 9kd9d>

:(9k191 o Owegr - degd) Dy,

which implies the commutativity of the diagram as desired.

In order to show ¢ is an S-module isomorphism, let (az,...,aq) € Homype s (P, X),
k € Z4, and denote the components of o = (Oém Qga ... Oékd) € Homg(S% F) as
in Lemma 3.1.10. Furthermore, Lemma 3.1.10 tells us that oqj) = Okktj)Qk+j) (k) for

each 7 # 0. Hence, a = (9k1a11 Orory - - - deadd). It follows that the morphism
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(v, ...,a4) depends only on the diagonal components ayy, g, ..., agq. In particular, the
tuple (aq1,...,Qqq) € @?21 F; is a pre-image for (ay, ..., aq) under the map 6. Finally, 6 is
injective since k-th component of <9k191 v Opege - 9kd9d> is Orrgr = gr- O]

Corollary 3.1.12. For any X € MF%(f) of size n, the I'-module F(X) = Homypq () (P, X)
is a free S-module of rank dn. In particular, F(X) € MCM(I). O

Consider how the elements e¢; € I' act on a morphism « : P — X. From the Lemma

3.1.11, we may write oy, = (9k1g1 degd> for some (g1,...,94) € @jzl F;. Fori € Zy,

we write e; = (€l ..., €L) where €f(ay, ..., aq) = (0,...,0,0a;0,...,0) for any (ay,...,aq) €

Se. Tt follows that ay o€l = <() v Ogigi - 0) where the only nonzero entry is in the
d

i-th position. Hence, e;; - o = ((() v Opigi - 0)) € e;F(X) and in fact this is
k=1

the form of every element of e;; F(X):

eii]:(X):{((O s Ohg 0)); giep’}'

Proposition 3.1.13. Let X = (¢, : Fy — Fi,...,pq : F1 — F;) € MF%4(f). Then

Olpy,s ..., 0l : X = HF(X) is an isomorphism of matriz factorizations.

Proof. First notice that for any g; € Fj,

d

k=1

The restriction of ¢ is injective by definition and surjective by the paragraph preceding the

proposition. Therefore, it is enough to show the commutativity of the diagram

Pd Pd—1 P2 P1
F1 > Fd > F2 > Fl

po P b

> 622.F<X> — 611.7()().

~

o
E
o
E

z z
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d
Let i € Zq and g;11 € Fiyq. Then 0| ¢i(giv1) = ((0 o Ori0i(Gigr) - 0)) and

f9im1 =1+1
eki%(giﬂ) =

OrPrt1 - Pic190i(giv1) k#i+ 1

To compute the other composition, recall that z - eg1)i+1) = €41y for any o € F(X).
Write €1y = (e%iJrl)i, 6%@'—1—1)1'7 e G?H-l)i) where EI(Ci—i-l)i : 8% — S? for each k € Zy. It suffices

to compute the composition of S-homomorphisms S¢ — Fj,

((0 0k(2+1)(gl) O> OEI(CZ-+1),L-> (al,...,a/d),

for each k € Zy and (ay,...,aq) € S¢. We have that

N (O,...,faz-,...,O) k=1+1
€(i+1)i<a17"‘7ad) -

0,...,ai,...,0) k#i+1

where the only non-zero entries are in the (i + 1)st position. Thus, the composition above
is equal to a;0k(i11)(g;) when k # i + 1 and fa,g; when k = ¢ 4+ 1. Comparing this with
the components of 0|p,¢;(gi+1) we conclude that z o 0|, (gi+1) = 0|F, © ¢i(gi+1). Hence,

Olpy,s ..., 0, X = HF(X) is an isomorphism of matrix factorizations. O

As a consequence of Proposition 3.1.13, the functor H is also dense. This completes
the proof of Theorem 3.1.6. It is also worth mentioning that the analogous statement for
the composition FH is true, that is, FH(M) = M for any M € MCM(I'). This follows
from observing that the isomorphism of free S-modules, 0y : M — FH(M), is also a
I-homomorphism. As in the proof of Proposition 3.1.9, one can show that e;;_1)0x ) (m) =

eH(M) (ei(i_l)m) for all m € M andi € Zd.

50



3.2 Periodic Resolutions

Let (S,n,k) be a complete regular local ring, f € S a non-zero non-unit, and d > 2. An
important consequence of Eisenbud’s Theorem 1.2.7 is that the minimal free resolution of
any finitely generated module over the hypersurface ring R = S/(f) is eventually periodic
with period at most two. The periodic part of the resolution is precisely given by a matrix
factorization (with 2 factors). Moreover, this property characterizes hypersurface rings: If
a local ring R has the property that the minimal free resolution of every finitely generated
module is eventually periodic, then the completion of R must be a hypersurface ring (see
[Eis80, Corollary 6.2]).

With this characterization in mind, we make two observations about the ring I' =

Endypq ) (P)* defined in Section 3.1.

Proposition 3.2.1. Let P = P,c;, Pi and I' = Endygpa 4 (P)°P. Then every finitely gener-
ated left I'-module has a projective resolution which is eventually periodic of period at most

2.

Proof. Let N be a finitely generated I'-module and set r = dim S. Let M = syz.(N) be an

arbitrary r-th syzygy of N over ', and let
O— M —PFP,y—PFPyg—-—P—F—N—0

be the first 7 — 1 steps of a projective resolution of N for some finitely generated projective
[-modules P;, © = 0,1,...,r — 1. Recall that finitely generated projective I'-modules are
in MCM(I'), that is, they are finitely generated free S-modules. Thus, the Depth Lemma
implies that depthg(M) = r. Since MCM S-modules are free, we have that M € MCM(I)
as well. Now, by Section 3.1, there exists X € MF%(f) of size n such that F(X) =
Homypa (s (P, X) = M. Since P is projective in MF%(f), the functor F is exact. In

particular, applying F to the periodic resolution constructed in Proposition 2.3.8 yields an
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exact sequence of MCM I'-modules

F(p)

TP Fopix)) L2

F(p)

F(I(X)) F(P(X)) > M

v
e

Actually, this is a free resolution of M over I' since F(P(X)) & F(D,ez, Pi') = I'™ and
similarly F(I(X)) = I'. Thus, splicing together this periodic free resolution of M and the

projective resolution of NV, we get an eventually periodic resolution of N with period at most

2. [l

Recall that a Noetherian ring A is said to be Iwanaga-Gorenstein if injdim,A and

injdim ., A are both finite.

Lemma 3.2.2. Let r be the Krull dimension of S. The ring I' = Endyypq ) (P)* is Iwanaga-

Gorenstein of dimension r.

Proof. First we show that any short exact sequence

0 s —2 s M 2 MY

~
)

(3.2.1)

with M, M' € MCM(T") splits. To see this, first note that H(T') = HF(P) = P is injective

in MF%(f). Therefore, the short exact sequence of matrix factorizations

H(q) H(p)

H(T) H(M) H(M')

is split. Since H is full and faithful, there exists t : M — I' such that H(t)#H(q) = 1y r) and
tq = 1r which implies that (3.2.1) is split.

To finish the proof, we apply results from [Aus86] which apply to both I and T'°P. By
[Aus86, Lemma 1.1] we have that I' & Homg(Q, S) for some projective I'°P-module @). The

functor Homg (O, S) : MCM(I') — MCM(I'°P) defines a duality and therefore

Q) = Homg(Homg(Q, S),S) = Homg(rI', 5).
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Thus, Homg(rI',S) is I'°P-projective which happens if and only if Homg(reeI',.S) is I'-
projective according to [Aus86, Lemma 5.1]. In this case, [Aus86, p. 5.2] says that injdimpI" =
injdimg¢S which is equal to r since S is Gorenstein. Interchanging the roles of I" and I'°P we

find that injdimpe,[' = r as well. O

Corollary 3.2.1 and Lemma 3.2.2 give a homological description of I' which resembles
that of a commutative hypersurface ring. This prompts us to call ' a “non-commutative

hypersurface ring”.
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4 | Branched Covers

4.1 The d-fold branched cover

Let (S,n,k) be a complete regular local ring, and let f be a non-zero non-unit in S. Set

R = S/(f) and fix an integer d > 2.

Definition 4.1.1. The (d-fold) branched cover of R is the hypersurface ring
R* = S[2]/(f + 2%).

Throughout this chapter, we will also assume that k is algebraically closed and that the
characteristic of k does not divide d. In this case, the polynomial ¢ — 1 € k[z] has d distinct
roots in k and the group formed by its roots is cyclic of order d. Any generator of this group
is a primitive d-th root of unity. Since S is complete, it also contains primitive d-th roots of
1 € S [LW12, Corollary A.31].

Fix an element w € S such that w? =1 and w' # 1 for all 0 < t < d. The ring R* carries
an automorphism o : R¥ — R* of order d which fixes S and sends z to wz. Denote by R¥[o]
the skew group algebra of the cyclic group of order d generated by o acting on R*. That is,

R'o] = @z, R* - o' as R:-modules with multiplication given by the rule
(s-0")-(t-o%) =s0'(t) - o

for s,t € R* and i, j € Zg. The left modules over R*[o] are precisely the R*-modules N which
carry a compatible action of o, that is, an action of ¢ such that o(rz) = o(r)o(z) for all

r € R and x € N. It follows that R itself is naturally a left R*[o]-module with the action
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of o given by evaluating o(r) for any r € R*. We say that a left R*[o]-module is maximal
Cohen-Macaulay (MCM as usual) if it is MCM when it is viewed as an R*module. Denote
the category of MCM R*[o]-modules by MCM, (R¥).

In the case d = 2, Knorrer showed that the category of MCM modules over Rf[o] is
equivalent to the category of matrix factorizations of f with 2 factors [Kno87, Proposition
2.1]. The main goal of this section is to extend the equivalence given by Knorrer for all d > 2

(Theorem 4.1.5).

Lemma 4.1.2. Let N be an R*[o]-module. Then N decomposes as an S-module into N =
Dicz, N“" where
N¥ = {zreN:o(x)=wz}.

Furthermore, if N is a MCM RF[o]-module, then N and each summand N are finitely

generated free S-modules.

Proof. In order to justify the direct sum decomposition of N, we will make repeated use of

the fact Z?:_Ol wh =0 for any k € Zy. Let 2 € N and observe that

=0 1=0
d—1 d—1 d—1
=) o'(zx)+ Z w o (@) + -+ Z w™ @ Digi ()
=0 =0 =0
d—1 d—1
= w (1)
k=0 =0
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That is, Zj:_ol wkgi(x) € N“*. Since o is S-linear and d is invertible in S, we have that

implying that N = Zz;(l) Ne*,

Next, suppose we have a sum of elements
To4+ai 4+ +241=0 (4.1.1)

with z; € N*' for each i € Zy, and let j € Z;. Notice that if k, ¢ € Zg, then w™ %% (x,) =
w Ikl ) = (Z+0k g, In particular, w™*o*(z;) = z; for all k € Z,. Therefore, applying

w*a* to (4.1.1) gives us an equation

(—j+1)k

w_jkxo-f-w xl+...+xj+...+w(—j—1)kxd_l =0.

Summing over Z,4, we find that

Z Z WMEIT) gy 4 da; = 0.
i#j k€ZLqg
Once again, since Ziié WE=I+) = 0 for all i # j, we can conclude that xz; = 0. Thus,
N = @d ' N“' as desired.
The second statement holds since a finitely generated Rf-module N is MCM over R* if

and only if it is free as an S-module. O]

As an S-module, R* is finitely generated and free with basis given by {1, z, 22,..., 2% '},
Consequently, a finitely generated Rf-module N is MCM over R* if and only if it is free
over S [Yos90, Proposition 1.9]. Furthermore, multiplication by z on N defines an S-linear
map ¢ : N — N which satisfies ¢ = —f - 1. Conversely, given a free S-module F and

a homomorphism ¢ : F' — F satisfying ¢¢ = —f - 1p, the pair (F, ) defines an MCM R*-
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module whose z-action is given by the map ¢. We will use these perspectives interchangeably

throughout the rest of this chapter.

Definition and Proposition 4.1.3. Let R, R, Rf[o], and w be as above. Let u € S be

any root of z? + 1 € S[z].

(i)

(i)

Let N be an MCM Rf[o]-module and N*' be as in Lemma 4.1.2 for each i € Z,.
Define a matrix factorization A(N) € MF%(f) as follows. Multiplication by pz defines

an S-linear homomorphism
N¢ — N

for all ¢ € Z4. The composition

d—1

e i I L=

is equal to —2? = f times the identity on N« Tt follows that the above homo-
morphisms and free S-modules form a matrix factorization of f in MF%(f) which we
denote as A(N). For a homomorphism g : N — M of MCM Rf[g]-modules, define a

morphism of matrix factorizations

.A(g) = (g|Nwd—1,g’Nwd—2, c.. ,g|N1)

where g|.: denotes the restriction of g to the S-direct summand N “ of N. Thus, we

have a functor A : MCM, (Rf) — MF%(f).

Let X = (g1 : Fy = Fy,...,pq: FI — F;) € MFL(f). Define
BX)=F,®oF; 1®--®F

as an S-module. Give B(X) the structure of a R*[o]-module by defining the action of
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2 (g, Ta—1,...,01) = (ﬁflﬁpd(iﬁ), 1 a1 (za), - .. ;M71901(332))

and the action of o as

U'(Idvxd—lw"aml)::(xduwxd—lﬂUQxd—Qw"a“) $1%

for any x; € F;, i € Z4. For a morphism of matrix factorizations a = (v, ag, ..., aq) :
X — X', where X' = (¢} : Fy — F|,..., ¢, : F| — F}), define B(«a) : B(X) — B(X")
by

B(a)(a, Ta-1, ..., 21) = (@a(Ta), @a-1(Ta-1), - .., a1(z1))
for all (z4,24-1...,21) € B(X). Thus, we have a functor B : MF%(f) — MCM,(R?).

Proof. Several pieces of the definitions need justification. First we note that, since —1 has a
d-th root in k, we may apply [LW12, Corollary A.31] to obtain an element p € S such that

pud = —1.

(i) Multiplication by pz defines an S-linear map N ©' 5 N for any i € Z, since y € S
and

o(zx) = o(2)o(r) = w2z

for all z € N*'. Notice that (pz)? = uz¢ = f € Rt. Therefore, the composition

)dfl

Nwi+1 (pz N Nwi nz N Nwi+1

equals f - 1,.: for all i € Zy. Similarly, the composition
N P et (uz)d—1 N
equals f - 1,,i+1 forall i € Zg. We know that each N “' is a free S-module by Lemma
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(i)

4.1.2 so, by applying Lemma 1.2.9, we have that rankg(N“') = rankg(N"") for all
i € Z4. This implies that A(N) € MF&(f).

If g: N — M is a homomorphism of Rf[g]-modules, then g(rz) = rg(z) and og(z) =
g(o(z)) for all x € N and r € Rf. Tt follows that g|y.:(N“") € M*" and that the

diagram

7 VA i+1
No' HE e Nw

g\Nwil lgleiH

sz' nz Mwi+1
commutes for all i € Z4. In other words, A(g) is a morphism of matrix factorizations

A(N) = A(M).

First we justify that the defined actions of z and o make B(X) a MCM Rf[c]-module.

Recall the homomorphisms 635 : F; — Fy, from Section 2.1, which are given by

925: 1Flc 1=k

OrPrr1 " Pi2Pi-1 1 F k.
We will drop the superscript X for the rest of this proof. We claim that for any s > 1

and (zg,x4-1,...,21) € B(X),

2% (T, Tg—1, ..., 21) = fqufr(ed(dw)(xdw), e 791(1+r)(x1+7"))

where s = dqg+1r,q > 0, and 0 < r < d. When s = 1 the formula is precisely the
defined action of z on B(X). Assume the claim is true for s = dg+r > 1 with ¢ > 0

and 0 < r < d and consider multiplication by z**!. By induction we have that
s+1

2 (@gs o mn) = 20 f T ((Oagaen) (Tagr), - - Orasr) (T14r)

= FIum T (a1 (T ), - - - 1020240 (T24r)).
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If r=d—1, then op_10y44r) = f - 1p,_, for each k € Z; and therefore
ZS+1 = fq+1,u_(r+1)<xd7 Tg—1y--- ,l'1>-

If0<r<d-1,then 0 <r+1<dand therefore v_104k1r) = O—1)(x+r) for each

k € Zg. In this case,

S5t qu—(TJrl)(@d(Hr)(IHT), oo 01240 (Ta4r))

which completes the induction. It follows that multiplication by z¢ is given by

Zd ’ ($d7"'7x1> = f/ub_d(xdu"wxl)'

By definition, ;=% = —1. Thus, (f + 24)B(X) = 0, that is, B(X) is an R*-module. In

fact, since B(X) is free as an S-module, it is MCM as an Rf-module.

In order to show that B(X) has the structure of an R*[o]-module, we must show that
o(rz) = o(r)o(z) for all r € R* and z € B(X). It suffices to show that o(zz) =

o(z)o(x) for all z € B(X). This follows since

o(2)o(x) = wz - (2g, wr4_1, ..., w" ay)

= 2 (wrg, W rg_1,..., 1)
= (0 palz1), p wpao1 (Ta), - w T or (2))
=0 (p ' a(x1), 1™ pa1(xa), .., 1 o1 (22))

= o(z2x)

for any z = (24,241, ...,21) € B(X). Hence, B(X) € MCM, (R*).

Finally, we must show that B(a) forms a homomorphism of Rf[s]-modules. This is

straightforward to verify by recalling that oy, = ok for all k € Z,. O
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Remark 4.1.4. The role of p in the definition of A(N) is to obtain a d-fold factorization
of f (instead of —f) and to do so in a symmetric way. It is important to note that the
isomorphism class of A(N) € MF%(f) is independent of the choice of . To see this, observe
that given another root y' of 2¢ + 1, we may write ' = w/p for some j € Zy and obtain an

isomorphism of matrix factorizations:

wz nz nz
N » N1 y N@ y oo —— N

E—
ll lw—(d—l)j lw(d2)j lw—j ll

/ / ’

d—1 z z z z d—2 z
Nv P NL B2y No B2 0 BE Nt B2 Nw

~

Similarly, ="' in the definition of X* ensures that we obtain a module over R* and the

isomorphism class of X* in MCM(R?) is also independent of the choice of .

Theorem 4.1.5. The functors A : MCM,(RY) — MF&(f) and B : MFL(f) — MCM,(R?)
are naturally inverse and establish an equivalence of the categories MCM, (RY) ~ MF%(f).
Proof. Let X = (p1: Fy — Fy,...,0q: Fi = Fy) € MF%(f). Then B(X) = F; @ Fy_1 @
.-+ @ Fy with the action of o on B(X) given by o(zg4,...,71) = (z4,wrq_1,...,w" 1x;) for
each z; € F;. For each i € Z4, the S-module F; is embedded into B(X) via the natural
inclusion map which we will denote as ¢; : F; — B(X). Notice that the action of o on B(X)
implies that
BX)*" " ={(0,...,0,2:,0,...,0) : z; € B} = ¢;(F}).

Therefore, the matrix factorization AB(X) is given by

BX)*" " 5 BX)T - s BT s BX)YT
which is isomorphic to X via the isomorphism
F LN A R SE ) TN 7
l(n lqd lqz lch
BX)*" 5 BX)Y L - s BT S BT
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Indeed, the diagram above commutes since

1z () = pge(p " or(2)) = qupr()

forall k € Z; and = € Fjy1.

To show AB is naturally isomorphic to the identity, suppose we have a morphism a =
(a1,...,0q) : X = X' where X' = (¢} : Fy — Fi,...,¢, : Fl — F}) € MF%(f). The
matrix factorizations X’ is isomorphic to AB(X') via the morphism (q;,d), ..., q,;) where

¢, : F! — B(X') is the natural inclusion. Recall that the homomorphism B(«) is given by

B(a)(zg, xg_1,-..,21) = (ag(xq), ag_1(xq-1), ..., a1(z1)).

Applying the functor A forms a morphism of matrix factorizations by restricting B(«) to the

submodules B(X)*" ", The images of these restrictions land in the submodules B(X')*""

In other words, the k-th component of the morphism AB(«) is given by the composition

where py, is the natural projection onto Fj. Therefore,

AB(a) o (q1, G2, - - - qa) = (dhoup1, haapa, - - -, uaapa) © (q1, @2, - - -, 4a)
= (qlloélv q;a% s 7(]210%1)
and this implies the commutativity of the diagram
X ——— X'

(‘117---7‘1d)l l(Q’p--nq;)

AB(X) 22 AB(x).
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Next, let N be an MCM RFf[g]-module. As an S-module,

d—1

BA(N)=N'@N“@®---® N

In fact, the natural S-isomorphism Wy : BA(N) — N given by (no, 1, ..., ng-1) = D _icp M
is also an R*[o]-homomorphism. To see this, let (ng,n1,...,n4-1) € BA(N). Then Uy is a

Rf-homomorphism since

Un(z- (no,ni,...,ng1)) = Un(p peng 1, p  uzng, ..., puzng,)
=Un(zng_1,2n0,...,204-1)
= Z(no +n;+-- 'nd,1>

= Z‘IJN(no, ny,... ,nd,1>
and a Rf[o]-homomorphism since

Un(o(ng,ni,...,ng1)) = Yn(ng,wny, ... ,wd_lnd_l)
=Ng+wny+- -+ wd_lnd_l
=o(ng)+o(ny)+ -+ o(ng_1)

=o(ng+ny+---ng1)

= O'(\IIN(no,nl, N ,nd_l)).

4.2 A ring isomorphism R[o] =T

In Section 3.1 we showed that the category of MCM modules over the endomorphism ring
of the projective object P = Py @ Py & --- & Py is equivalent to the category of matrix

factorizations of f with d > 2 factors. Together with Theorem 4.1.5 we have an induced
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equivalence of the module categories MCM, (R¥) and MCM(Endygpq ) (P)?P). In fact, the
two rings are isomorphic which we will see below. Note that this isomorphism only makes
sense in the setting of this chapter since R*[o] is not well-defined otherwise.

Recall, also from Section 3.1, that I' = Endyga 4 (P)°P is a free S-module with basis given
by the elements {e;;}; jez,. The main rules for multiplication in I" are given in Lemmas 3.1.3,

3.1.5, and 3.1.4.
Proposition 4.2.1. The rings R*[o] and T = Endyipa sy (P)P are isomorphic.

Proof. The set {z'07}; jez, forms a basis for R*[c] over S. Asin 4.1.3, let u € S be any root

of z¢+ 1 € S[x]. Define a map v : Rf[o] — T by

W(z)=p Z eii—1) and (o) = Z w e
i€Z4q i€Zq
Extend 1 multiplicatively, that is, define 1(z'c7) = ¥ (2)%)(c)? for all 4,5 € Zy4. Since
{2'07}; jez, is an S-basis, ¢ extends uniquely to a well defined S-linear homomorphism.
We claim that 1 is also a ring homomorphism. Since 1 is S-linear, it suffices to check
that ¥(2i07 - 2to*) = (2i07) - p(2¢c*) for all i, 5, ¢, k € Z4. From Lemma 3.1.3 we have that
€iiCj(j—1) = €j(j—1) if i = j — 1 and 0 otherwise, and similarly, e;;_1)e;; = ;1) if j =4 and

0 otherwise. Therefore,

Y(o)(z) = (Z w_ie“) <M > €j(j—1)>

1€ZLq J€Zg

=K Z w Ve

1€7Zq

= pHw Z w_iei(ifl)

1€ZLq

ol X ) ()

i€Zg) JE€ZLq

= wip(2)(0)
= Y(wzo).
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Since 0z = 0(2)0 = wzo in R¥[o], we have that ¥)(0z) = 1(o)1(z). By induction, it follows

that o2/ = w¥ 290" and
P(0'2’) = w2 (o) = (o) (2)
for all 7, j € Z4. The fact that v is a ring homomorphism now follows since

(2o - 2oF) = (w2t
= () (o
= w(2)' Y (2) (o) (o)
= ¥(2)" (o) (2) Y (0)*
= ¥(2'0?) - ¥(2'o")
for all i, §, 0, k € Zy.
As S-modules, both R*[¢] and T are free of rank d?. Therefore, to conclude that 1) is an

isomorphism, it suffices to check surjectivity. First, we show that the element ey is in the

image of ¢ for each k € Z,. Indeed, if j € Z4, then

U(o?) = Z w e

1€ZLq

Thus, for any k € Zg,

1 Jk 53 _1 J J
w<32wka>—32wkw(a)

JEZLq JE€ZLq

= Cll Z Z wj(kii)eii

JEZLG €L

= %Z D Wit e + é > e

i#k jELg JEZLq

= €Ckk-
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Hence, the elements eq1, €99, ..., €44, and ZiEZd ei(i—1) are in the image of 9. It follows that
exh—1) € Imep for all k € Zy since ey, Ez’EZd €i(i—1) = exk—1) by Lemma 3.1.3 (iv). Finally,
Lemma 3.1.4 allows us to conclude that e;; € Imw for all 4,7 € Z,4, implying that ¢ is

surjective as desired. O]

4.3 Finite matrix factorization type

A local ring A is said to have finite Cohen-Macaulay (CM) type if, up to isomorphism, there
are only finitely many indecomposable objects in the category MCM(A) of MCM A-modules.

We adopt the following analogous terminology for the representation type of the category

ME§(f).

Definition 4.3.1. We say that f has finite d-MF type if the category MF%(f) has, up to

isomorphism, only finitely many indecomposable objects.

In [Kn687], Knérrer proved that R = S/(f) has finite CM type if and only if R =
S[z]/(f + 2?%) has finite CM type. The correspondence, given by Eisenbud [Eis80, Corollary
6.3], between matrix factorizations and MCM R-modules implies that the number of isomor-
phism classes of indecomposable objects in MCM(R) and MF%(f) differ by only one. Since
R* is also a hypersurface ring, the same is true for MCM(R*) and MF%HZ]]( [ +2%). With this

in mind, we state a version of Knorrer’s theorem.

Theorem 4.3.2 ([Kno87], Corollary 2.8). Let f € n* be non-zero, R = S/(f), and d =2 so
that R* = S[2]/(f + 22) and chark # 2. Then the following are equivalent:

(i) R has finite CM type;
(ii) [ has finite 2-MF type;
(iii) R* has finite CM type;

(iv) f+ 2% has finite 2-MF type.
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The main goal of this section is investigate which of the analogous implications for d-fold
factorizations hold when d > 2. The rest of the results in the Chapter are joint with G.
Leuschke and can be found in [LT21].

Our first observation is that the implications (ii) = (i) and (iv) == (iii) still hold

for d > 2 in the following sense:

Lemma 4.3.3. Let S be a regular local ring, f a non-zero non-unit in S, and d > 2. If f
has finite d-MF type, then f has finite k-MF type for all 2 < k < d. In particular, if f has
finite d-MF type for some d > 2, then R = S/(f) has finite CM type.

Proof. Tt suffices to show that finite d-MF type implies finite (d — 1)-MF type. To see this,
let X = (¢1,09,...,04-1) € MFE(f) be indecomposable. Consider the d-fold factoriza-
tion X = (©1,9,...,94-1,1p) € MF4(f). To complete the proof, we show that X is
indecomposable in MFE(f).

Suppose € = (e, €2,...,€q) is an idempotent in Endypq p (X). Then e = (e1,...,eq-1)
is an idempotent in EndMFGSH( N (X). Since X is indecomposable by assumption, we have

that e =0 or e = 1. Since é : X — X’, it follows that e; = e; and therefore, é =0 or e =1

implying that X is indecomposable as well. 0

In general, the converse of Lemma 4.3.3 does not hold (see Example 4.4.5).

4.3.1 The functors (-)’ and (—)

As in Section 4.1, let w € S be a primitive d-th root of 1 and p € S be any d-th root of —1.
We start with a pair of functors between the categories MCM(R?) and MF%(f) which are
closely related to the functors A and B from Section 4.1 (see Lemma 4.3.8 for the precise

relationship).
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Definition 4.3.4.

(i) For N € MCM(RF), let ¢ : N — N be the S-linear homomorphism representing

multiplication by z on N and define

N = (up, pp, ..., ) € MFE(f).

For a homomorphism g : N — N’ of Rf-modules, define ¢’ = (g,9,...,9) € HomMFcSz(f)(Nb, (N")?).

ii) For X = (¢1 : Fo» = Fi, 09 : F3s — Fy, ..., 0q: Fi — F;) € MF4(f), define an MCM
® © @ s

Rf-module by setting X* = @i;é Fy_ as an S-module with z-action given by:

2 (g, a1, .., %2, x1) = (Mflwd(fl), ,U7190d71($d)7 cee 7,u71901($62))

for all z; € F;,i1 € Zy. For a morphism o = (ag,qs,...,aq) @ X — X', define

of = @y aar € Homp: (X¥, (X")F).

As in Remark 4.1.4, the element p allows for a factorization of f instead of — f. Moreover,
the isomorphism classes of N* and X* are not dependent on the root of 2% +1 € S[z] chosen.

Recall the automorphism o : R* — R* which fixes S and maps z to wz. This au-
tomorphism acts on the category of MCM Rf-modules in the following sense: For each
N € MCM(R*), let (0%)*N denote the MCM R*module obtained by restricting scalars
along 0% : R* — R'. Since 0¢ = 1, the mapping N + ¢*N forms an autoequivalence of
the category MCM(R!). We also recall the shift functor 7 : MF%(f) — MF%(f) given by
T(o1,02, -, 04) = (P2, 03,...,04,¢1). It also gives an equivalence of MF%(f) with itself

. . d _
satisfying T = 1MF% ()

Proposition 4.3.5. Let N be an MCM R*-module and X € MF%(f). Then

Xt = PTHX) and N*= (M) N.

k€Zq keZq
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Proof. Let X = (1 : Fy — Fi,...,pq : Fi — F;) € MF4(f). By definition X* = F; @

Fy 1 ®---@® F; as an S-module and multiplication by z on X* is given by pu~'¢ where

0 0 e 0 g
pa1 0 - 0 0

¥ = 0 Pd—2
0 0 v 0

Therefore, X¥ = (¢, ¢,...,¢) € MF%(f). One can perform row and column operations to
see that that (¢, ¢,...,¢) = @,ep, THX).

Notice that the first half of the proof is valid in any characteristic as long as there exists
an element p € S satisfying u¢ = —1. For instance, if d is odd then —1 is a valid choice.
However, the second half of the proof explicitly makes use of the fact that chark does not
divide d.

In order to show the second isomorphism, let N € MCM(R*) and let ¢ : N — N be the
S-linear map representing multiplication by z on N. Then N° = (up : N — N, ..., up :
N — N) € MF(f) and therefore N = N @ N @ --- @ N, the direct sum of d copies of the

free S-module N. The z-action on N°! is given by

2 (nay g1, - ma) = (n pp(n), 1t pe(ng), ..., 11~ e (ns))

= (zny, 2ng, ..., 2N3),

for any n; € N,i € Zy.

Let k € Zg and define a map g, : N* — (¢)*N by mapping

n=(ng,Ng_1,-..,N01) —

for any n € N°. Note that for m € (¢*)*N, z-m = w*zm by definition. Therefore, for
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n = (ng,...,n) € N,

QL

—1

z-gp(n) = z - (wjknd,j)

QU+
Q.
Il
— o

w(ﬁl)kznd,j

[e=]

<.

=

d—1)k

Ul &l

(w 2Ng + kaznd_l + -+ w! ZNo + znl)

K=

which implies that g is an Rf-homomorphism. Putting these maps together we have an

R*-homomorphism

g0
g1 il
g= N @(Jk)*N.
: k=0
gd—1

In the other direction, we have Rf-homomorphisms s;, : (¢¥)*N — N°* given by

k 2k —(d-1)k

sp(m) = (m,w " m,w " m,... ,w m)

for any m € (0%)*N. For each k € Zg and m € (c%)*N, we have that gysi(m) = m. On the

other hand, if 7 # ¢ € Zy, then

gisf(m) = g’L(m? w—ém’ w_%m? s ,(Jsz)
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Therefore, setting s = (30 S - Sd—1)> we have that

gosSo  9goS1 - goSd—1
9150

gs =
gda—150 - 9d—1Sd—1

which is the identity on @), ., (¢*)*N. Hence g is a split surjection. However, since both
the target and source of g have the same rank as free S-modules, we conclude that g is an

isomorphism of Rf-modules. O]
Corollary 4.3.6.

(i) For each X € MFL(f), there exists N € MCM(R*) such that X is isomorphic to a

summand of N”.

i) For each N € MCM(RY), there exists X € MF(f) such that N is isomorphic to a
S

summand of X*. ]
We can now state the main result of this section.

Theorem 4.3.7. Let d > 2. Then f has finite d-MF type if and only if the d-fold branched
cover R¥ = S[2]/(f + 2%) has finite CM type.

The proof given below is lifted directly from the d = 2 case. Once again, the characteristic
assumption on k is only needed in half of the proof as long there exists p € S satistying

ud = —1.

Proof of Theorem 4.5.7. Let X1, Xs, ..., X; be arepresentative list of the isomorphism classes
of indecomposable d-fold matrix factorizations of f and let N € MCM(R*) be indecom-

posable. Since N° € MF%(f), there exist non-negative integers si,ss,...,s; such that
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N 2 X8 X532 @---@ X;*. By Proposition 4.3.5, N is isomorphic to a direct summand of
N = (X)) @ (X)) @ - @ (X)™.

Since N is indecomposable, KRS in MCM(R*) implies that N is isomorphic to a summand
of Xf for some 1 < i < t. Hence, every indecomposable MCM Rf-module is isomorphic to
one appearing in the finite list consisting of all summands of all X}, 1 < j < t. The converse

follows similarly from Proposition 4.3.5 and the KRS property in MFdS( f). [

In Section 4.1, it was shown the the category MF%(f) is equivalent to the category
of finitely generated modules over the skew group algebra Rf[s] which are MCM as R*-
modules. The equivalence is given by a pair of inverse functors A : MCM,(Rf) — MF%(f)
and B : MF%(f) — MCM,(R!). To finish this section, we make note of the connection

between the functors A and B and the functors (—)* and (—)".

Lemma 4.3.8. Let H : MCM,(R*) — MCM(RF) be the functor which forgets the action of
o and G : MCM(RF) — MCM, (R*) be given by G(N) = R¥[0]@p: N for any N € MCM(R?).

(i) For any X € MF%(f), X! = H o B(X).
(i) For any N € MCM(R?), N* = Ao G(N).

Proof. The first statement follows directly from the definition of (—)* and B. For the second,

consider the idempotents

1 e
ek:aZwJJJER[U], k€ Zyg.

J€Lq
These idempotents have three important properties:
(a) Rf[o] = Pyez, exR¥[0] as right R¥[o]-modules,

(b) oey, = epo = whey, k € Zy, and

72



(c) zex = ep_12, k € Zy.

From (b), we have that ey R*[0] = e, R* where e, R* denotes the multiples of e, by R -
1 C R*[o] on the right. Hence, as an Rf-module, e, R* is free of rank 1. Thus, for any
N € MCM(R?), (a) implies that G(IN) = @kezd(ekRﬁ ®pt N). It then follows from (b) and
(¢) that we have an isomorphism of Rf[o]-modules G(N) = B(N®). Hence, Ao G(N) =
Ao B(N") = N° by Theorem 4.1.5. O

Remark 4.3.9. In the case of an Artin algebra A, the relationship between A and the skew
group algebra A[G] for a finite group G was studied by Reiten and Riedtmann in [RR85].
They show that many properties relevant to representation theory hold simultaneously for
A and A[G]. In particular, A has finite representation type if and only if the same is true
of A[G]. The equivalence of categories MF%(f) =~ MCM, (R*) and Theorem 4.3.7 give an

analogous relationship between R* and the skew group algebra Rf[o].

4.4 Hypersurfaces of finite d-MF type

Let (A, m) be a regular local ring and g € m? be non-zero. Then the hypersurface ring A/(g)
is called a simple hypersurface singularity if there are only finitely many proper ideals I C A
such that g € I2. In the case that A is a power series ring over an algebraically closed field

of characteristic 0, the pair of papers [BGS87] and [Kn687] prove the following theorem.

Theorem 4.4.1 ([BGS87],[Knd87]). Let k be an algebraically closed field of characteristic 0
and let R = X[z, 79, ...,2,]/(9), where g € (x1,79,...,2,)* is non-zero. Then R has finite

CM type if and only if R is a simple hypersurface singularity.

Essential to their conclusion is the classification of simple hypersurface singularities, due
to Arnol’d [Arn73], which gives explicit normal forms for all polynomials defining such a
singularity. These are often referred to as the ADE singularities. The culmination of these

results is a complete list of polynomials which define hypersurface rings of finite CM type
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in all dimensions (see [Yos90, Theorem 8.8] or [LW12, Theorem 9.8]). Equivalently, the
polynomials in this list are precisely the ones with only finitely many indecomposable 2-fold
matrix factorizations up to isomorphism.

Using Theorem 4.3.7 and the classification described above, we are able to compile a list

of all f with finite d-MF type for d > 2.

Theorem 4.4.2. Let k be an algebraically closed field of characteristic 0 and S = K[y, xa, ..., z,].
Assume 0 # f € (y,xa,...,2,.)% and d > 2. Then f has finite d-MF type if and only if, after

a possible change of variables, f and d are one of the following:
(A)):  y*+ a3+ -+ 22 for any d > 2

(Ag): 4 a3+---+a22 ford=3,4,5

(A3):  y*4+ a3+ +a2 ford=3

(Ag): Yy +a3+---+a2 ford=3

Proof. Let f and d be a pair in the list given. Then f+2¢ is a simple hypersurface singularity
and therefore R* has finite CM type by Theorem 4.4.1. By Theorem 4.3.7, f has finite d-MF
type.

Conversely, let 0 # f € (y,xa,...,7,)%, d > 2, and assume f has finite d-MF type. Then
R* = S[z]/(f + 2?%) has dimension r and is of finite CM type by Theorem 4.3.7. We consider
two cases.

First, assume dim R* = 1, that is, assume S = k[y]. Then f = uy* for some unit u € S
and k > 2. Since S is complete and chark = 0, there exists a k-th root v of ™! in S [LW12,
A.31]. Therefore, after replacing y with vy, we may assume that f = y*. Since dim Rf =1,
[Yos90, p. 8.2.1] implies that ord(y* + 2?%) < 3. Hence, either k < 3 or d < 3. If k = 2, there
are no restrictions on d since y* + 2¢ defines a simple (A,_;) singularity for all d > 2. If
k = 3, then the fact that y® + 2% is a 1-dimensional simple hypersurface singularity implies

that d = 3,4, or 5. Similarly, if d < 3, then d = 3 and k = 2,3,4, or 5.
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Next, assume dim R* > 2. In this case, [Yos90, p. 8.2.2] implies that ord(f+2%) < 2. Since
d>2and f € (y,22,...,2,)% we have that ord(f) = 2. By the Weierstrass Preparation
Theorem [LW12, Corollary 9.6, there exists a unit v € S and g € k[y,xs,...,2z,_1] such
that f = (g+22)u. As above, we may neglect the unit and assume that f = g+ 22 for some
g € K[y, xa,...,xq-1].

Since the hypersurface ring defined by f+ 2% = g+ 22+ 2% has finite CM type, Knérrer’s
theorem (Theorem 4.3.2) implies that g + 2¢ defines a hypersurface ring of finite CM type
as well. Thus, g has finite d-MF type by Theorem 4.3.7. We repeat this argument until
f=¢ +23+---+ 22 for some ¢’ € k[y] with finite d-MF type. Finally, we apply the first

case to ¢’ to finish the proof. m

Corollary 4.4.3. Letk be an algebraically closed field of characteristic 0, S = k[y, xa, ..., 2],
and f € (y,2a,...,2,)% be non-zero. If f has finite d-MF type for some d > 2, then
R = S/(f) is an isolated singularity, that is, R, is a regqular local ring for all non-maximal

prime ideals p.

Proof. The polynomials listed in Theorem 4.4.2 are a subset of the ones in [Yos90, Theorem

8.8] (or [LW12, Theorem 9.8)), all of which define isolated singularities. O

Suppose we have a pair f and d from the list in Theorem 4.4.2 such that R* has dimension
1. Then [Yos90, Chapter 9] gives matrix factorizations for every indecomposable MCM R*-
module. By computing multiplication by z on each of the corresponding Rf-modules, we can
compile a representative list of all isomorphism classes of indecomposable d-fold factorizations

of f. We give one such computation in the following example.

Example 4.4.4. Let k be algebraically closed of characteristic 0. Let S = k[y], f = y* € S,
and R = S/(f). The hypersurface ring R* = k[, y]/(y* +2?) is a simple curve singularity of
type Eg and has finite CM type. Here we are viewing R* as the 3-fold branched cover of R. By
Theorem 4.3.7, the category MF%(y*) has only finitely many non-isomorphic indecomposable

objects. We give a complete list below.
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A complete list of non-isomorphic indecomposable MCM Rf-modules is given in [Yos90),
p. 9.13]. By Corollary 4.3.6, we may compute multiplication by = on each of these modules to
obtain a representative from each isomorphism class of indecomposable matrix factorizations

of y* with 3 factors. By Remark 4.1.4, we may choose pt = —1.

T Yy
Following the notation of [Y0s90, p. 9.13], we let ¢ = and M; = cok ¢;.

T

Let e; and ey in M; denote the images of the standard basis on S [[:U]]2 Then e; and ey
satisfy re; = —y3ey and z%e; = ye;. As an S-module, M is free with basis {ey, es, Tes}.

Multiplication by = on M; is therefore given by

Hence, M} = (—p, —¢, —p) € MFi(y*). Furthermore, we have a commutative diagram

g3 AN S LAY S 3

) (=) (1) (")
DR

Thus, M? is isomorphic to the direct sum of the indecomposable factorization X o= (%Y, 1)

N
w
W
w
n
w

and its corresponding shifts, that is, M7 = @,., T"(y*,y,1).

Similarly, multiplication by  can be computed for each of the indecomposable MCM R*
modules listed in [Yo0s90, p. 9.13]. From this computation, we obtain the list of indecompos-
able 3-fold matrix factorizations of y* given in Table 4.1.

The factorizations Py, X, , Xy, , X,, and Xz are each indecomposable since they are of

P1

size 1. By Corollary 2.3.12, the cosyzygy of an indecomposable reduced matrix factorization
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Table 4.1: Indecomposable objects in MFiﬂyﬂ(yA‘)

X € MF3(y*) N® for N € MCM(R?)
Pi=(y*,1,1) (RF) = @icy, T'(P1)
X = (%9, 1) M = @z, T (X1
Xy = (4%, 1,y) Ny = Dicp, TH(Xn)
Xoy = (%, 9%, 1) M3 = Ny =@, T(X,,)
X5 = (v*,9,v) B’ = @z, TH(X5)
v 0 —y? | 0 —y | 0 —y =@, TH(X,)
1 —y 1 —y? 1 —y
P N N N X0 @, T(X0).
0 y° y 1 y> 0

is again indecomposable. Here a reduced matrix factorization means all the entries of all
the matrices lie in the maximal ideal of S (see Section 4.6). Using (2.2.10), we have that
QI:/IFg(y‘l)(XfB) =~ X, and therefore, X, is indecomposable.

Since X is of size 2, a non-trivial decomposition would be of the form (y, b, ¢) @ (y3,¥, ¢)

0y
for some b, ¢, b/, ¢ € S. Since det = —y?, the possibilities for b and ¥’ are, up to units,

y 1
b=1y*and V) =1 or b=y = b. By considering cokernels, both cases lead to contradictions

and so X¢ must be indecomposable.
By Proposition 4.3.5, these seven factorizations, and each of their corresponding shifts,

give the complete list of non-isomorphic indecomposable objects in MF%(y*) (21 in total).

To end this section, we discuss the relationship between the 2-MF type of f and the
d-MF type of f for d > 2. As we saw in Lemma 4.3.3, finite d-MF type implies finite 2-MF
type. The example below shows that the converse does not hold in general. In particular,

we give a polynomial of finite 2-MF type which has infinite 3-MF type.
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Example 4.4.5. Let S = k[z,y] where k is an algebraically closed field with chark # 2,3
and let f = 23 +4® € S. The hypersurface ring R = S/(f) is a simple singularity of type
D, and therefore has finite CM type.

Consider R* = k[, y, 2] /(2 +y3+2?), the 3-fold branched cover of R. Following [BP15],
to each point (a,b, c) € k3 satisfying a® + b* + ¢ = 0 and abe # 0, we associate the Moore

matrix

ar bz cy
Xabe = | by cx az

cz ay bx

The cokernel Ny = cok(Xgpe) is an MCM Rf-module and is given by the matrix factorization
(Xabes ﬁadeabc) € MF%M (3 + 3® + 2), where adjX,. is the classical adjoint of X ..
Furthermore, N, is indecomposable since det X5 = abe(z® + y® + 23) and 2% +¢® + 23 is
irreducible. Buchweitz and Pavlov give precise conditions for X,;,. to be matrix equivalent
to Xywe (see [BP15, Proposition 2.13]). In particular, their results imply that the collection
{Nawe}, as (a,b,c) varies over the curve z* + y + 23, gives an uncountable collection of
non-isomorphic indecomposable MCM R*-modules.

With respect to the images of the standard basis on S[z]]?, multiplication by z on Ny

is given by the S-matrix

0 -2y —%u
— c b
Pabe 7 0 —2Y

Therefore, we have that N’,. = (110abe; 1Pabes HPabe) € MF% (23 + 93), where p? = —1. For
any Ny, Ny € MCM(R?), N> = Nj if and only if Ny = (0¥)*N, for some k € Z4. Hence,
the collection of non-isomorphic indecomposable summands of N’, for all (a,b,c) as above
cannot be a finite set. It follows that 23+ has infinite 3-MF type. Furthermore, the entries
of e lie in the maximal ideal of S so z* + »? has infinite reduced 3-MF type as well (see

Section 4.6).
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4.5 Decomposability of N’ and X’

Let d > 2 and (S, n, k) be a complete regular local ring. Assume k is algebraically closed of
characteristic not dividing d. Let f € n? be non-zero, R = S/(f), and R* = S[z]/(f + 2%).
Proposition 4.3.5 showed that both N** and X#® decompose into a sum of d objects. In this
section we investigate the decomposability of N” and X*.

Recall that the shift functor 7' : MF%(f) — MFE&(f) satisfies T¢ = Lype () In particular,
for any X € MFdS(f), there exists a smallest integer k& € {1,2,...,d — 1,d} such that

TFX =~ X. We call k the order of X.
Lemma 4.5.1. For any X € MF%(f), the order of X is a divisor of d.

Proof. For a given X € MF%(f), the cyclic group of order d generated by T acts on the set
of equivalence classes {[T"X] : i € Zy}. In particular, the stabilizer of [X] is generated by
T* for some k | d which can be taken to be the smallest possible in {1,2,...,d}. It follows

that the order of X is k. O]

The next result builds on an idea of Knorrer [Kné87, Lemma 1.3] and Gabriel [Gab81,
p. 95]. The proof is based on [LW12, Lemma 8.25] which states that a matrix factorization
(,90) € MF%(f) satisfying (¢,v) = (¢, ) is isomorphic to a factorization of the form
(0, po). For d > 2, the situation is similar, but the divisors of d play a role. Specifically, if

X has order k, then X is isomorphic to the concatenation of k matrices, d/k times.

Proposition 4.5.2. Let X € MF%(f) be indecomposable of size n and assume X has order
k < d. Then there exist S-homomorphisms ¢\, ¢4, ..., ) such that (e - gp%)% =f-1,

and

Xg(90,17(p/2’7(p;<:7(p/1’90,27’90;€77Lp/1’90,27’90;€>

Proof. Let X = (p1 : Fy — Fi,p9 1 F3 — Fo,...,04 1 FI — Fy) and set r = d/k. By

assumption, there is an isomorphism a = (ay,...,aq) : X — TFX. By applying T%(-)
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repeatedly, we obtain an automorphism & of X defined by the composition

(

k(o 2k (o (r=2)k (¢ (r=1)k (¢
X —o ey T ey T T prene e T

In particular, & = (i (r—1)k it (r—2)k * * - oszai)f:l. Since X is indecomposable the endomor-
phism ring A := Endype ;) (X) is local. Since k is algebraically closed, it cannot have any
non-trivial finite extensions which are division rings. Hence, the division ring A/ rad A must

be isomorphic to k. This allows us to write
a=c-lx+p

for some ¢ € k* and p € rad A. Since chark t d, we may scale a by ¢+ and assume
a=1x+pfor p=(p1,p2,...,pa) € rad A.
If v € Zg, then

Qip; = ai(ai+(r71)kai+(r72)k gy — 1)
= (0 (r— D)t (r—2)k =+~ Vg — LFy,, )%

= Pi+kC-

Represent the function g(x) = (1+2)~Y/" by its Maclaurin series and define, for each i € Z,
Bi = ig(pi) = g(piri)ci : Fi — Fiyy.
For i € Z4, we have that
Bipi = g(pirr)ivi = 9(Pitk) PitkCiv1 = Pirng(Pith+1)Qir1 = @itk Biv1.

Hence, 5 = (B1,P2,...,084) € HomMFg(f)(X, T*X). By repeatedly applying a;g(p;) =
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9(pirr )i, we have that

5¢ﬁz’—kﬁi—2k e ‘ﬁz’+2k5i+k = (aig(pi>>(ai—kg(pz’—k))(az‘—2kg<)0i—2k)) ce (Oéi+kg(;0¢+k))
= OO0 —f " ai+2kai+kg(pi+k)r
- (]‘Fi+k + pi+k)(1F¢+k + pi—l—k)_l

= ]‘Fi+k'

Hence, f3; is an isomorphism for each ¢+ € Z,; and therefore the morphism S is an isomorphism
of matrix factorizations.

We claim that X = (8101, ., @k, 1015 -+ Prs -+, P1P15 - -, pr). For 0 < 7 <r—1and
2 <t < k+1, define v;; to be the composition of the homomorphisms 3; beginning at Fi

of length r — j. In other words,

Vik = ﬁt+(r—1)kﬁt+(r—2)k o '5t+(j+1)k5t+jk : Ft+jk — Iy

Note that each v;; is an isomorphism. For j = 0, the index —1 is interpreted as r — 1 so
that v_1 141 = Bi.
Let 0 <j<r—1and 2 <t <k+ 1. To finish the proof, it suffices to show that the

following diagram commutes:

Pk+ijk Pk—1+jk P2+jk Pl+ik
Frpivjr —— Frgjn b > Foyj ——— Pk
l%‘,k+1 l’Yj,k l’hﬂ l’Yj—l,IH—l
Pk Pl—1 ©2 B1p1
Fk‘—i—l > Fj > y Fy > Fk+1.

The commutativity can be broken into three steps. First, we show that ~,;_1 s+1914j8 =

51901%',2-
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By repeatedly applying £;¢0; = @iixBiv1, © € Zg, we have that

Yi-1,k+1P1+jk = BrB1—kBi—2k - - '51+(j+1)k51+jk%01+jk
= Brp1B2-wBaak - - 52+(j+1)k52+jk

= 51%01%',2-

Similarly, for 2 <t < k, we have that

VitPt+ik = Be—iBr—ok - 'ﬁt+(j+1)kﬁt+jk<,0t+jk

= OtBrr1-kBir1—2k - - ‘5t+1+(j+1)kﬁt+1+jk

= PtVjt+1
and
VikPrik = BabB-rB-2k *** Bu+1)kPLG+1)k
= opB1frk @1+(j+1)k
= PrVjk+1-
Thus, the d-tuple v = (Y_1411,7,2,70.3, - - > Y.k+1, V1,25 - - -, Vr—1,4) forms an isomorphism
fI'OHl X to (61@17 s 7%0]6751()017 s Pl e 751@17 s 7g0k> L

Example 4.5.3. Let X = (@1, 02,93, 04) € MF§(f) and assume X has order 4. Then
Y = X @ T%X satisfies T?Y =Y but TY 2 Y. Hence, Y has order 2. As in Proposition

4.5.2, we have an isomorphism

¥1 ©2 ©3 ¥4

©3 P4 ®1 ©2

¥3 Y2 ¥3 P2

12

¥1 P4 P1 P4
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So, Y is isomorphic to the concatenation of the two matrices and
Y1 P4

The special case of order 1 will be important going forward.

Corollary 4.5.4. Let X € MF%(f) be indecomposable of size n and assume that X =

TX. Then there exists a homomorphism ¢ : S™ — S™ such that ¢¢ = f -1, and X =
(P, 0, 9). O

Proposition 4.5.5. Let X € MF%(f), N € MCM(R?), and assume both X and N are

indecomposable objects.
(i) If X 2 TX, then X = M" for some M € MCM(R?).
(i) If N = 0*N, then N = Y* for some Y € MFL(f).

Proof. If X =2 T X, then Corollary 4.5.4 implies that there exists a free S-module F' and an
endomorphism ¢ : F — F such that ¢ = f-1p and X 2 (¢, ¢,...,¢) € MF%(f). The pair
(F, u~tp) defines an MCM(R*) module M as follows: As an S-module, M = F, and the
z-action on M is given by z-m = u~lp(m) for all m € M, where u € S satisfies u? = —1.
Since (u~'p)? = —f - 157, M is naturally an Rf-module. Since M = F is free over S, it is
MCM over R*. By applying (—)", we have that M’ = (p,¢,...,¢) = X.

Assume N =2 ¢*N. Using a similar technique to the proof of Proposition 4.5.2, we obtain

an isomorphism of Rf-modules § : N — ¢*N such that

(600 (67 2)*0o---00"00h = 1y.

Such an isomorphism defines the structure of an Rf[s]-module on N. Thus, by Theorem
4.1.5, there exists Y € MF&(f) such that B(Y) = N as Rf[o]-modules and therefore Y* = N
as Rf*-modules by Lemma 4.3.8(i). O

Proposition 4.5.6. Let X be indecomposable in MF%L(f) and N be indecomposable in
MCM(R?).
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(i) Assume X =TX. Then X* = @, , (0%)*M for some indecomposable M € MCM(R?)
such that M 2 o*M.

(ii) The number of indecomposable summands of X* is at most d. Furthermore, if X* has

exactly d indecomposable summands, then X = TX.

(iii) Assume N = ¢*N. Then N’ = Brcz, TFY for some indecomposable Y € MF4(f)
such that Y 2 TY .

(iv) The number of indecomposable summands of N° is at most d. Furthermore, if N° has

exactly d indecomposable summands, then N = ¢*N.

Proof. If X = T'X, then Proposition 4.5.5(i) implies that X = M" for some M € MCM(R?).
By Proposition 4.3.5, we have that X* = M" = @, , (¢*)*M. Similarly, if N = o*N,
then Proposistion 4.5.5(ii) and Proposition 4.3.5 imply that N° = @kezd T*Y for some
Y € MF4(f).

Next, in the case that T'X = X, we show that M above is indecomposable and satisfies

M % o* M.

e Suppose M = M, & M, for non-zero M, My € MCM(R*). Then (o*)*M = (o*)* M, ®
(o%)* M, for each k € Zg. Therefore,

X1 X# 2= B((0") M) & (o) Ma)'.
k€Zyg
This contradicts KRS since the left side has precisely d indecomposable summands
while the right hand side has at least 2d indecomposable summands. Hence, M is

indecomposable.

e Suppose that ¢*M = M. Then, since M is indecomposable, the arguments above
imply that M” decomposes into a sum of at least d indecomposable summands. Since
T(M°) = M”, we have

X X o (M) = (M)
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Since X is indecomposable, the left hand side has precisely d indecomposable sum-
mands while the right hand side has at least d? indecomposable summands. Once

again, we have a contradiction and so M % o*M.

This completes the proof of (i). We omit the remaining assertions from (iii) as they follow
similarly.
In order to prove (ii), suppose X* = M; & My @ --- @& M, for non-zero M; € MCM(R?).
Then
XoTX@ - aT ' XXM aM e & M. (4.5.1)

The left hand side has precisely d indecomposable summands and therefore ¢ < d.
If X* decomposes into exactly d indecomposables, that is, if + = d, then (4.5.1) implies
d.

that M is indecomposable for each i and that X = M]b for some 1 < j Then

TX =T(M)=M =X.

The proof of (iv) is similar, observing that o*(X*) = X* for any X € MF&(f).

4.6 Reduced matrix factorizations

Let (S,n,k) be a complete regular local ring, 0 # f € n? and let d > 2 be an integer.
Assume k is algebraically closed of characteristic not dividing d. In this section, we will

consider the following special class of matrix factorizations in MF&(f).

Definition 4.6.1. A matrix factorization X = (¢, @, ..., pq) € MFL(f) is called reduced
if o : Fry1 — F} is minimal for each k € Z,4, that is, if Im ¢, C nFj. Equivalently, after
choosing bases, X is reduced if the entries of ¢ lie in n for all £k € Z;. We say that f has
finite reduced d-MF type if there are, up to isomorphism, only finitely many indecomposable

reduced matrix factorizations X € MF%(f).

In the case d = 2, any indecomposable non-reduced matrix factorization is isomorphic to
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either (1, f) or (f,1) in MF%(f) [Yos90, Remark 7.5]. In particular, this implies that finite
2-MF type is equivalent to finite reduced 2-MF type.

For d > 2, the situation is quite different. There at least as many non-reduced indecom-
posable d-fold factorizations of f as there are reduced ones (see Corollary 2.3.12). Moreover,
finite d-MF type clearly implies finite reduced d-MF type but the converse does not hold for

d > 2 as we will show in Example 4.6.11.
Definition 4.6.2.

(i) Let X = (¢1,...,0q4) € MF%(f) and pick bases to consider @i, k € Zg, as a square
matrix with entries in S. Following [BGS87], we define I(ipy) to be the ideal generated
by the entries of ¢, and set I(X) = > ;, I(px). Note that the ideal I(X) does not

depend on the choice of basis.
(ii) Let cq(f) denote the collection of proper ideals I of S such that f € I

In the case d = 2, Theorem 4.4.1 implies that the reduced 2-MF type of f is determined
by the cardinality of the set ca(f). One implication of Theorem 4.4.1 is proven explicitly in
[BGS87]. The authors show that the association X +— I(X) forms a surjection from the set
of isomorphism classes of reduced 2-fold matrix factorizations of f onto the set co(f). Hence,
if there are only finitely many indecomposable reduced 2-fold matrix factorizations of f up
to isomorphism, then the set cy(f) is finite.

The following result of Herzog, Ulrich, and Backelin shows that the association X +— I(X)

remains surjective in the case d > 2.

Theorem 4.6.3 ([HUB91|, Theorem 1.2). Let I be a proper ideal of S and d > 2. If f € I,

then there exists a reduced matriz factorization X € MFL(f) such that I(X) = 1. O

Corollary 4.6.4. Suppose f has finite reduced d-MF type. Then cq(f) is a finite collection
of ideals of S. O

86



Corollary 4.6.4 extends one direction of Theorem 4.4.1; however, the converse does not

hold for d > 2 as shown by the next example.

Example 4.6.5. Let S = k[xz,y] where k algebraically closed with chark # 2 and f =
z?y € S. Then the one-dimensional D, singularity R = S/(f) has countably infinite CM
type by [BGS87, Proposition 4.2]. For each k > 1, we have a reduced matrix factorization

of 2%y with 3 factors:

Xk = ) ) € MF%(ny)

k
Ty
Any isomorphism X, — X for k, 7 > 1 induces an isomorphism of R-modules cok —
0 —=x
x 1y
cok . Such an isomorphism is only possible if & = j, that is, X = X if and only
0 —x
r yF
if £ = j. Since X}, is reduced and the MCM R-module cok is indecomposable,
0 —x

Corollary 2.3.12 implies that X}, is indecomposable. Thus, z?y has infinite reduced d-MF
type.

On the other hand, we claim that c3(2?y) contains only the maximal ideal. To see this,
suppose I is a proper ideal of S such that f = 2%y € I?. Notice that if a € I®, then
2(a) € I? (and 8%(@) € I?). Hence, 2(z%) = 2zy € I*. Similarly, 2zy € I? implies that

L (2zy) =2y € I and 8%(23:3/) = 2x € I. Tt follows that I = (z,y) and c3(z%y) = {(z,y)}.

So, c3(x?y) is finite but 2%y has infinite reduced 3-MF type.

4.6.1 Ulrich modules and reduced matrix factorizations

Let N be an MCM R*-module and let pp:(N) denote the size of a minimal generating set

of N. Recall that N is finitely generated and free over S. We will see below that there is an
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inequality

pge(N) < rankg(N). (4.6.1)

In the following, we consider MCM Rf-modules N where the equality jppz:(N) = rankg(N)
is attained.

As we saw in Example 4.4.4, a matrix factorization of the form N”, obtained by computing
multiplication by z on an MCM Rf-module N, can be non-reduced. We will show below
that the matrix representing multiplication by z on N contains unit entries precisely when
pr:(N) < rankg(N). In other words, the restriction of the functor (—)’ : MCM(R!) —
MF4(f) to the subcategory of MCM Rf-modules satisfying pp:(N) = rankg(N) produces
only reduced matrix factorizations of f with d factors. Conversely, the image of the functor
(=) : MF%(f) — MCM(R?), restricted to the subcategory of reduced matrix factorizations

of f, consists exactly of the MCM Rf-modules N satisfying pp:(N) = rankg(N).

Lemma 4.6.6. Let N be an MCM R*-module and assume that f + 2% is irreducible. Then

N is a finitely generated free S-module satisfying
e (N) < rankg(N) = d - rank g (N) = rankg(R*) - rank gz (V).

Proof. Let (®: S[z]" — S[z]", ¥ : S[z]" — S[=]") € MFgM(f + 2%) be a matrix factoriza-
tion of f + z¢ such that ® gives a minimal presentation of cok ® = N. Since ® is minimal,
n = pgr:(N). Then det ® = u(f + 24)* for some 1 < k < n and some unit u € S[z]. Recall
that k& = rankg:(N) by [Eis80, Propoistion 5.6]. By tensoring with S = S[z]/(z), we find
that det ® = v - f*, where ® = ® ®s[z) 1s and v € S is a unit. Moreover, ® is injective, since

PV = f-1g» = P, and we have a minimal presentation of N/zN over S:

0 y g 2, gn » NJzN —— 0.

On the other hand, since N is MCM over R, it is finitely generated and free as an S-
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module. Let r = rankg(/N) and consider the map ¢ : S” — S” representing multiplication
by z on N. This map also gives a presentation of N/zN over S, though the presentation
may not be minimal as we saw in Example 4.4.4. Thus, there exists a commutative diagram

with vertical isomorphisms

P 0
0 Ir—pn
0 > S” > S" » NJzN —— 0
l l H (4.6.2)
0 > S” L5 » NJzN ——— 0.

This implies that pgr(N/2N) < r, where R = S/(f) as usual. The inequality now follows from
the fact that ur(N/zN) = pg:(N). Furthermore, the diagram implies that det ¢ = v’- f* for
some unit v’. However, since ¢? = —f - I, we have that, up to units, f7 = (det )¢ = f*d.

Thus, rankg(N) = r = dk = d - rankgz; (N). O

Lemma 4.6.7. Assume f + 2% is irreducible. Let N be an MCM R*-module and let X €
MFL(f). Then pg:(N) = rankg(N) if and only if N* € MF%(f) is reduced, and X* satisfies
pr:(X?) = rankg(X*?) if and only if X is reduced.

Proof. Let N € MCM(RF) and set r = rankg(N). Let ¢ : S” — S" be the S-linear map
representing multiplication by z on N. Then the presentation of N/zN given by ¢ in (4.6.2)
is minimal if and only if r = rankg(N) = ug(N/2N). Since pr(N/zN) = ug:(N), we have
that ¢ is minimal if and only if rankg(N) = pg:(N). This proves the first statement since

N° = (up, pp, -+ jup) € MEE(f).

By Proposition 4.3.5, X% = Gakezd T*X which is reduced if and only if X is reduced.

The second statement now follows from the first by taking N = X* € MCM(R¥). ]
Lemma 4.6.7 gives us a specialization of Corollary 4.3.6 and Theorem 4.3.7.

Proposition 4.6.8. Assume f + 2% is irreducible.
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(i) For any reduced X € MFL(f), there exists N € MCM(R?) satisfying rankg(N) =

pre (N) such that X is isomorphic to a direct summand of N°.

(ii) For any N € MCM(RF) satisfying ranks(N) = up:(N), there exists reduced X €

MF4(f) such that N is isomorphic to a direct summand of X*.

In particular, f has finite reduced d-MF type if and only if there are, up to isomorphism,

only finitely many indecomposable MCM R*-modules N satisfying rankg(N) = pp:(N).

Proof. Both (i) and (ii) follow from Lemma 4.6.7 and Proposition 4.3.5. The final statement
follows as in the proof of Theorem 4.3.7 by noticing that a matrix factorization Y € MF%(f) is
reduced if and only if every summand of Y is reduced and that an MCM Rf-module N satisfies

pri(N) = rankg(N) if and only if every summand of N satisfies the same equality. O

For a module M over a local ring A, we let e(M) denote the multiplicity of M. If M is
an MCM A-module, there is a well known inequality pua(M) < e(M). The class of MCM
modules satisfying pa(M) = e(M) are called Ulrich modules. For background on Ulrich
modules we refer the reader to [Beal8], [BHU87|, [HK87], and [HUB91]. If A is a domain,
then we may compute the multiplicity of M as e(M) = e(A) - rank4(M).

In the case of the d-fold branched cover of R, we have the following connection between
reduced d-fold matrix factorizations of f and Ulrich modules over R*. We let ord(f) denote

the maximal integer e such that f € n°.

Corollary 4.6.9. Assume d < ord(f) and that f + 2¢ is irreducible. Let N € MCM(RF).
Then N is an Ulrich Rf-module if and only if N° € MFdS(f) 15 a reduced matrix factorization
of f.

In particular, f has finite reduced d-MF type if and only if there are, up to isomorphism,

only finitely many indecomposable Ulrich R*-modules.

Proof. Since d < ord(f), the multiplicity of R* = S[2]/(f + 2%) is d. Hence, an MCM

Rf-module N is Ulrich if and only if jp:(N) = d-rankg: (N). By Lemma 4.6.6, the quantity
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d - rankp: (N) is equal to the rank of N as a free S-module. Thus, N is Ulrich if and only if

tr:(N) = rankg(N). Both statements now follow from Proposition 4.6.7. O

Remark 4.6.10. In the case d = 2, the condition rankg(N) = ppi(N) is redundant. An
MCM R* = S[2]/(f + 2?)-module N satisfies rankg(N) = pp:(N) if and only if N has no
summands isomorphic to R* (this follows from the proof of [LW12, Lemma 8.17 (iii)]). In
other words, the conclusion of Proposition 4.6.8 in the case d = 2 is simply a restatement
of Theorem 4.3.2. Furthermore, Corollary 4.6.9 implies that any MCM Rf-module with no
free summands is an Ulrich module. Since, in the case d = 2, the multiplicity of R* is 2 this

is a known result of Herzog-Kiihl [HK87, Corollary 1.4].

Example 4.6.11. Let k be an algebraically closed field of characteristic 0 and consider the

one-dimensional hypersurface ring

Roi =Xk[x,y]/(x® +y*t"), a>2,i>0.

If i =1 or i = 2, then, by [HUB91, Theorem A.3], R,; has only finitely many isomorphism
classes of indecomposable Ulrich modules. Set S = k[y] and consider R,; as the a-fold
branched cover of R = k[y]/(y**). Since e(R,;) = a, Corollary 4.6.9 implies that y**
for i € {1,2}, has only finitely many isomorphism classes of reduced indecomposable a-fold
matrix factorizations. In other words, y®™ has finite reduced a-MF type for i = 1,2 and any
a > 2.

The methods in [HUB91, Theorem A.3] can be used to compute the isomorphism classes
of indecomposable reduced matrix factorizations of y***. For instance, let a > 2 and i = 1.
Then R,; = k[t*,t*"'] and ¢* is a minimal reduction of the maximal ideal m of R, ;. Hence,
R,; = Roi[{fz : v € m}] = k[t] is the first quadratic transform of R,;. By [HUB9I,
Corollary A.1], an R,;-module M is Ulrich over R, if and only if it is MCM over R, ;.
Since R, ; = k[t] is a regular local ring, the only indecomposable MCM Ry, ;-module is R;, ;

itself.
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As an S = k[t*]-module, R, | = k[t] is free with basis given by {1,¢,#,...,¢*"'}. Thus,

multiplication by z = %™ on the basis {1,¢,...,%7'} is given by the mapping

tk |_> ta+1+k — tatk+1

for 0 < k < a—1. Since y = t*, it follows that multiplication by x on the MCM R, ;-module

/

.1 18 given by the a x @ matrix with entries in k[y]

0 0 0 92

y 0O 0 0
»=10 vy

0 0 y 0

It follows that ( gﬂb = ®Dicz, T((W 0,9y, -, y)) € My, (y*). By Proposition 4.6.8
and Corollary 4.6.9, the matrix factorization (y*,y,y,...,y) € MFyp,(y**"), and its corre-
sponding shifts, are the only indecomposable reduced matrix factorizations of y**! with a
factors.

Notice that for a > 4, the polynomial y**! does not appear on the list given in Theorem
4.4.2 for any d > 2. Thus, the conclusions of this example imply that y**! has infinitely
many isomorphism classes of indecomposable matrix factorizations with a factors but only

finitely many which are reduced.
The last example shows the necessity of the assumption d < ord(f) in Corollary 4.6.9.

Example 4.6.12. Let k be algebraically closed of characteristic 0. Set S = k[z], f = z?, and
R = S/(f). The hypersurface ring R* = k[z,y]/(z* + y*) is the same ring given in Example

4.4.4, however, here we are viewing R* as the 4-fold branched cover of R = k[z]/(2?). Again
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using the notation of [Yos90, p. 9.13|, we take B = cok 8 where

The MCM Rf-module B is, in this case, free of rank 4 over S = k[z]. In particular, if e, es,
and ez are the images of the standard basis on S[y]?, then an S-basis for B is {ey, es, €3, yea }.

Multiplication by y on B is given by the S-matrix

0 0 x O

—x 0 0 0
SOZ

0 00 =

0 1 .00

Notice that B is an Ulrich R*-module but multiplication by y on B is given by a non-reduced

matrix. In other words, the condition d < ord(f) in Proposition 4.6.8 is necessary.

93



5 | Morphism Categories of MCM mod-

ules

Let S be a regular local ring, 0 # f a non-invertible element of S, and set R = S/(f).
The main goal of this chapter is to generalize Eisenbud’s correspondence (Theorem 1.2.7),
between matrix factorizations of f with 2 factors and maximal Cohen-Macaulay R-modules,

to the case of matrix factorizations of f with d > 2 factors.

5.1 Morphism categories

Definition 5.1.1. Let A be a local ring and M, N € MCM(A). Fix n > 1.

(i) An A-homomorphism g : M — N is called admissible if both cok g and ker g are in
MCM(A). Let Mor,(A) denote the category of sequences of admissible homomorphisms

of length n. In other words, an object £ € Mor,(A) is a sequence

&= (M, == M,y =2 - =25 M, —2 M) (5.1.1)

such that M; € MCM(A) for i = 1,2,...,n and g; is an admissible homomorphism
fori = 1,2,...,n — 1. A morphism 8 = (81, 52,...,0,) : & — £ between objects

£, & € Mor,(A) is a commutative diagram:

gn—1 gn—2 g2 g1
M, =— M, ; —= ... s M, s M,
J/ﬂn l n—1 lBQ lﬂl
! ! / /
In—1 In—2 9o 91
M —— M , —— - > M) > M.
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(i) An A-homomorphism ¢ : M — N is called an admissible monomorphism if it is
admissible and injective. The monomorphism category of A, denoted S, (A), is the
full subcategory of Mor,(A) consisting of sequences of admissible monomorphisms of

length n.

(iii) Dually, g : M — N is called an admissible epimorphism if it is admissible and sur-
jective. The epimorphism category of A, denoted F,,(A), is the full subcategory of

Mor, (A) consisting of sequences of admissible epimorphisms of length n.

The Depth Lemma [LW12, Lemma A.4] ensures that the subcategories F,,(A) and S,,(A)
are well behaved. In particular, MCM(A) is closed under extensions and an admissible
epimorphism in MCM(A) is just an epimorphism of A-modules. For this reason, and the

following lemma, we will focus our attention on the category F,(A).
Lemma 5.1.2. For any n > 1, there is an equivalence of categories F,(A) ~ S,(A).

Proof. This follows directly from the fact that MCM(A) is closed under extensions. In
particular, the equivalence is given by the functor which sends ¢ € F,(A), of the form

(5.1.1), to the sequence

ker g, 1 — ker(gn_ogn_1) * S > ker(g1g2 - gn1) —— M,

in S,(A). O

In the case of an Artin algebra A, the analogous morphism categories of A-modules have
been studied thoroughly. Ringel and Schmidmeier considered the case of the “submodule
category” (n = 2) in the series of papers [RS06], [RS07], and [RS08]. The general case
(n > 2) has also received a great deal of attention. We refer the reader to [Sim07], [Chell],

[RZ14], and [XZZ14] for more information.
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5.2 The epimorphism category of a hypersurface ring

Let S be a regular local ring, 0 # f € S a non-unit, and fix an integer d > 2. For the rest of
this chapter, we will consider the morphism categories defined in (5.1.1) in the case of the
hypersurface ring R = S/(f). In light of Lemma 5.1.2, we need only investigate one of S,,(R)
or F,(R). We have chosen to present the main result of this chapter from the perspective
of the epimorphism category.

Recall the indecomposable projective matrix factorizations P;,i € Zg4, from Chapter 2.1.
Namely, P; = (1,1, ..., f,..., 1, 1) where the i-th component is multiplication by f on S while
the rest are the identity on S. Given an additive category C and a set of objects B in C,
we let C/B denote the category which has the same objects as C, and has morphisms which
factor through direct sums of objects in B identified with zero. Before stating the main

result of this chapter, we recall a more precise version of Eisenbud’s Theorem (1.2.7).

Theorem 5.2.1 ([Eis80], Theorem 7.4 [Yos90]). The functor cok : MF%(f) — MCM(R),

given by (p,v) € MF%(f) — cok o € MCM(R), induces an equivalence of categories:
MF2(f)/{Py} ~ MCM(R).
Furthermore, this induces an equivalence between stable categories:
MF3(f) = MF§(f)/{P1, P2} = MCM(R)/{R}.

The rest of this chapter is dedicated to proving our main result:
Theorem 5.2.2. There is an equivalence of categories MF%(f)/{Pas} = Fa_1(R).
Remark 5.2.3. The cases d = 2 and d = 3 of Theorem 5.2.2 are known.

(i) If d = 2, then F1(R) = MCM(R) is the category of MCM R-modules. In this case, The-

orem 5.2.2 coincides with Eisennbud’s fundamental theorem on matrix factorizations
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(Theorem 5.2.1 above).

(ii) If d = 3, then F»(R) can be identified with the category of short exact sequences
of MCM R-modules. In this case, Hopkins [Hop21, Theorem 3.1.4] proved that the
category of 3-fold matrix factorizations of f, modulo the projective factorization Py =

(1,1, f) in MFZ(f), is equivalent to the category Fa(R).

The key step in the proof of Hopkins’ result is the construction of a 3-fold matrix fac-
torization from a short exact sequence of MCM R-modules using the horseshoe lemma. The
following proposition is well-known (see [BLO7, Proposition 3.5] or [LW12, Remark 8.9]) and

gives an equivalent description of the factorization constructed by Hopkins.

Proposition 5.2.4. Let 0 - M’ — M — M" — 0 be a short exact sequence of MCM
R-modules. For any matriz factorizations (¢',¢") and (¢",1") corresponding to M' and M"
respectively, there exists a morphism («, 8) = (", ") — (¢',9) such that

¢ a V=p

Y

O SO// 0 ¢”

cok = M.

In particular, this matriz factorization can be factored further into

]n 0 ’ "2 « : ¢ _ﬁ c MF%(f)

0 QD” 0 I, 0 w//

where I, and I, are identity matrices of the appropriate sizes. [

5.2.1 The proof of the main result

Let d > 2. Given a matrix factorization X = (¢1 : Fo — Fi,...,0q: F} — Fy) € MFg(f),

define X; = cok(p1p2---@;—1p;) € MCM(R) for each j € Z,. Additionally, let 7; denote
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the canonical projection map m; : F1 — X, given by the short exact sequence:

e

P1P2 ;) j
0 > L1 > F1 > Xj

Define a functor Wy : MF$(f) — Fu_1(R) which sends a matrix factorization X € MF&(f)

to the sequence of surjections

Pd—2 Pd—3 P2 PL
Xd—l E— Xd_g > o > Xg > X1

where p; is the unique map completing the diagram

P1P2-Pi+1 41
> F1 >

0 —— Fjio

[ | P
Ry o3
0 —— Fj — F; —— X; > 0.
Given a morphism a = (ag, ag, ..., aq) : X — X', the morphism ¥,(«) is given by
Pd—2 Pd—3 R P2 PL
Xd_l _— Xd_Q 7 7 X2 7 Xl
l(m,ad) l(alvad—l) l(ahas) l(OéLOQ)
f Py—o ’ Py_s . 2 . ’ Pl . ’
Xd*l _— Xd*Z /2 7 X2 7 Xl

where (a1, ) is the unique map induced by the diagram

P1p2-Pi—1 j
0 > F > > X > 0
& a1 ;(alvaj)
@by ! ‘
J— J
0 y I > F » X > 0.

In order to prove Theorem 5.2.2, we show that W, is fully faithful and dense. We start

with a lemma which will be used to show the density of U,.

Lemma 5.2.5. Let X = (¢1,...,04-1) € MFYY(f) and assume there exists an MCM R-

module M with a surjection g : M — X4 o. Let & € Fy_1(R) denote the resulting sequence
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of length d — 1:

E=(M 2o Xgo 25 Xg 25 20 X, 2 X)),

Then there exists Y € MF%(f) such that Wy(Y) = €.

Proof. For simplicity, set ®; = @192 pj_1p; for each 1 < j < d —2. Let K = kerg
and pick a matrix factorization (px : Gx — Fr,vx : Fx — Gg) € MF%(f) such that
cok o = K. By Proposition 5.2.4, there exists a morphism of 2-fold matrix factorizations
(o, B) : (pa_1, Pa_2) — (¢x,¥k) such that

N _
M=cok | | 7F e P (5.2.1)

0 Py 0 i1

and a commutative diagram with exact columns and rows

0 0 0
0 y O Y GroF,, — Y s, ——0
PK «
PK q>d72
0 @49 (522)
0 y [y —— Fr @ Fy k s ) » 0
e Td—2
0 y K y M g y X9 —— 0
0 0 0

where u,u’ are the canonical inclusions and v, v are the canonical projections. The matrix

99



factorization (5.2.1) gives rise to a d-fold factorization Y € MF%(f) given by

lp, O lpe O lpe O YK @« v —p

0 ¢ 0 ¥ 0 ©q-2 0 1, 0  @i-1

What is left to show is that Uy(Y) = £. From the commutative diagram (5.2.2), we obtain

PK e’
0 &4
0 — G ®F;,, —— 5 FxkdFy ——— M > 0
e g (5.2.3)
0 1r, ,
0 — s Fr@dFy — s Fe®F, 2225 X;0 —— 0
lpe 0
0 D42

which has exact rows and also commutes. As above, let p; Y —Y;, 1 <7 <d-2, denote

the canonical map induced by the matrix factorization Y € MF%(f). Given a homomorphism

h: N — N’ let h denote the induced map h : N/ker h — N’. The diagram (5.2.3) induces

a commutative diagram
Yig —— M

[ lg

Tqg—2U

Yoo —— Xao

with horizontal isomorphisms.
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Similarly, for each 1 < 57 < d — 3, the commutative diagram

lpg O
0 @ o
0 —— Fx®Fjyy ———> FroF, —— X; > 0
lp O
Pi—1
0 ©j

0—>FK@.FJ —)FK@Fl M)Xj_l — 0

lpe 0

0 @j,l

induces isomorphisms v : Y; — X; and 7,0 : Y;_; — X;_; such that p;_ 1m0 =

T;_10p;_;. Thus, we have an isomorphism in Fy_(R):

Pa—s Pa_s Pda—a P P
Yo > Yo > Yis yo — Y, —— V)
lﬁ lﬂd_w lﬂd—:sv lﬁ lﬂ
g Pd—3 Pd—3 P2 P1
M — X0 — X, 3 > > Xo — X

Proposition 5.2.6. The functor ¥y : MFL(f) — Fy_1(R) is dense.

Proof. We prove that ¥, is dense by induction on d > 2. As we mentioned in Remark 5.2.3,
the cases d = 2 and d = 3 hold. Assume d > 3 and that W,;_; is dense. Let & € F;_1(R),

that is,

9d—2 9d—3 g2 g1
é-:Md,l—)Md,Q > e >M2 >M1

for MCM R-modules M, ..., My, and surjective homomorphisms g1, ..., gs_2. By induc-
tion, there exists a matrix factorization X € MF&(f) such that ¥, ;(X) is isomorphic to

the sequence of surjections of length d — 2 starting at My 5. In other words, there exists
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isomorphisms 71, ...,vs_2 and a commutative diagram

9d—3 9gd—4 g2 g1
Md_2 — Md_3 > e > Moy > My
l’Yd -2 l’Yd -3 l’m l’)’l
Pd—3 Pd—4 P2 p1
Xd_g E— Xd_g > e > X2 > Xl-

This isomorphism in Fy_5(R) extends to an isomorphism in Fy_1(R):

9d—2 9d—3 gd—4 92 g1
g: Md—l — Md_2 E— Md_g > o > Mo > M,
H = = 7 "
Vd—29d—2 Pd—3 Pd—4 P2 p1
€= My 2 x, P X, P2y, P X

Now, we may apply Lemma 5.2.5 to obtain a d-fold matrix factorization Y € MF%(f)

such that Wy(Y) = & which is in turn isomorphic to &. O
Proposition 5.2.7. The induced functor U, : MFS(f)/{Ps} — Fa_1(R) is fully faithful.

Proof. Since Wy(Py) = 0, there is an induced functor MF%(f)/{Ps} — F4_1(R), which
we will also call U, In order to show that Wy is full, let X, X’ € MF%(f) and assume
B = (b1, P2, Ba-1) : Ya(X) — Pu(X') is a morphism in Fy_1(R). Since F} is a free

S-module, there exist oy and oy making the diagram

P1p2-Pd—1 Td—1
0 y Iy y I > Xgo1 —— 0
g lﬁ
Y el T T
0 > I > F] » Xy, —— 0

commute.
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Next, we claim that 8;m; = 7r;-oz1 for each 1 < 7 < d—2. To see this, consider the diagram

PjPd—2
Xd—l ! > Xj
Td—1 5
Ba-1
F l F Bi
Pl Pa—s
a1 X</i—l d > X]/
(63}
Ty_q 7r§'
/ /
Fl Fl

Since [4-_1m4-1 = 7, ;1 we can see that each face of this cube commutes except possibly

the right most side face. However, using the commutativity of the other faces, we have that

o N / N / / o
Bimj = Bjpj - pa-2Ta—1 = Py Pg_oBa1Ta1 = Pj Pg—oMg_101 = T;00.

It follows that, for each 1 < j < d — 1, there exists a homomorphism a;y @ Fji1 — F7

such that
PLp2:p; T
0 —— Fin > I > X > 0
g%‘+1 lal lﬁj
~ @ﬁ s0/2(‘01 ’71'/.
/ I J / R
0 —> F7+1 7 Fl 7 A)(‘7 7 0
commutes.
Finally, we show that (ay, as, ..., ag) forms a morphism of matrix factorizations X — X.

To see this, let 1 < k < d — 1 and notice that

OLPy  Ph 1 PRt = C1P1P2 - P19k = L1905  Ph_1 WPk

Cancelling ¢ - - - ¢}, on the left, we have that ¢jaxi1 = agrpr. In the same way, it follows
that agpq = o and therefore the d-tuple (aq, ao, ..., a4) forms a morphism X — X'
Since Uy(a) = B by construction, the functor ¥, is full.

Next, we show that W, is faithful. Suppose o = (az, ..., aq) € Homygpa (X, X') such
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that Wy(a) = 0. Then there exist homomorphisms s;; : F1 — F},; such that

1o /
PPy PSir1 = and Sjp1P1P2 - P = Qg

for each 1 < j < d— 1. In particular, a; = ¢}ss and, for 2 < j < d — 2, we have that

ro / o A /
P1Po P18 = 01 = P1Po - PS5+1-

We may cancel @), -+ ¢} on the left to obtain the equation s; = ¢’s;; which holds for

each 2 < 7 < d — 2. Finally, we have that

Prph oy 1S f=[on=gh @l o

which implies that s, - f = ¢/,a1. Hence, we have a commutative diagram

%25} Pd—1 Pd—2 »3 P2 P1

F > Iy y Fy_q > o y Iy > Fy > Iy
flp 1p, 1m 1p 1p 1m

F > y I > y I > I > I
, Pa_1 P2 o o o
- - 3 2 1

F| > F) » F > > > F > F|

The middle matrix factorization is isomorphic to a direct sum of rankg(Fy) copies of Py.

Thus, a = 0 in MF%4(f)/{Ps} and W, is faithful. O

Corollary 5.2.8. The equivalence ¥ : MFL(f)/{Ps} — Fa_1(R) induces an equivalence
between the stable category MES(f) = MFL(f)/{P1,..., P}, defined in Chapter 2, and

Fi_1(R) modulo sequences of surjections consisting of only free R-modules. [

Let k be an algebraically closed field of characteristic zero and let d, m > 2 be integers.

Theorem 5.2.2 combined with Corollary 4.4.2 imply that the category Fy—i1(k[y]/(y™)) has
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finite representation type if and only if (d,m) € {(2,m),(3,3),(3,4),(3,5),(4,3),(5,3)}.
This is a known result of Simson [Sim07, Theorem 3.5]. In this sense, Corollary 4.4.2 is
an extension of Simson’s results to the case of a hypersurface ring of higher dimension.
Furthermore, we can give a slightly more general result, analogous to Corollary 4.4.2 in the

context of this chapter.

Proposition 5.2.9. Let (R,m,k) be a complete Gorenstein local ring containing k, an al-
gebraically closed field of characteristic zero. Assume there are, up to isomorphism, only
finitely many indecomposable objects in F,(R) for some n > 2. Then R is isomorphic to a
complete Ay, singularity for k =1,2,3, or 4. That 1s,

R=Zkly, .. o] /(" 2l + o+ 2))

T

fork=1,2,3, or4.

Proof. Let M € MCM(R) and let £y = (M — 0 — -+ — 0 — 0) € F,,(R). Then there is
an isomorphism of rings:

Endz, (r)({m) = Endg(M).

Since R is complete, the module M is indecomposable if and only if Endg(M) is a local ring.
Thus, if M is indecomposable, then Endz, r)(&ar) is local which implies that &y is indecom-
posable as well. In other words, there are at least as many non-isomorphic indecomposable
objects in F,(R) as there are in MCM(R).

Now, assume there are only finitely many indecomposable objects in F,,(R) up to iso-
morphism. Then R has finite CM type by the above observation. It follows from [LW12,
Theorem 9.16] that R is isomorphic to a complete ADE hypersurface singularity. By The-
orem 5.2.2 and Corollary 4.4.2 the only hypersurface rings with the property that F, (R)
has finite type for some n > 2 are the ones isomorphic to an A;, As, Az, or A4 hypersurface

singularity. O]
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To end this section, we use Theorem 5.2.2 to elaborate on Example 4.4.4.

Example 5.2.10. Let k be an algebraically closed field of characteristic 0. Let S = k[y],
f=vy"€ S and R = S/(f). In Example 4.4.4, we computed the complete set of 21
isomorphism classes of indecomposable 3-fold matrix factorizations of f = y*. Each of
these factorizations corresponds to an indecomposable object in Fy(R) (except Ps which
corresponds to zero). Furthermore, Theorem 5.2.2 implies that Table 5.1 below contains a
complete set of isomorphism classes of indecomposable objects in F3(R). We use the same

notation as Example 4.4.4.

Table 5.1: Indecomposable objects in F(R)

X U3 (X) U3 (TX) \Ijg(TQX)

P, RSR R—0 0—0

Xp R— R/(y) R/(y) = R/(y) R/(y*) =0

X R/(WP) = R/(y) R/(y) =0 R— R/(y)

Xpo R— R/(y) R/(y?) = R/(4?) R/(y?) =0

X R/(y") = R/() R/(y*) = R/(y) R/(y*) = R/(y)

Xo RO®R/(y) = R/(y) R® R/(y*) = R/(y°) RO R/(y) = R/(y°)

Xe R/W)®R—R/(y)®R/(v’) R/(W’)D®R/(y) = R/(y*) ROR/(Y)— R/(y*)

It is not hard to compute the surjections depicted above; with the exception of the sur-
jections induced by X¢, they are the obvious maps. The maps induced by X¢ = (¢1, 2, ¢3)
€ MF%(y*) and its shifts are also easy to compute. For instance, W3(X¢) can be computed

by the diagram below with exact rows:
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0
0 » 52 > 52 » R/(yY) R ——— 0
0 1 1 0
0 2
10 y 1
v y4 y3 v
0 » S2 > 52 » cok(p1pp9) ——— 0
0 y
y 1
0 » 52 > 52 » R/(y) ® R/(y?) ——— 0
y 0
0

Thus, the map R/(y?) ® R — R/(y) ® R/(y?) is given by (a,b) — (@,ya + b) where a,b € R

and (—) indicates the image of a or b in the appropriate quotient.
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6 | Tensor Products of Matrix Factor-

1zations

Let k be a field. In [Yo0s98], Yoshino introduces a construction which he refers to as the tensor
product of matrix factorizations. Namely, given a (2-fold) matrix factorization X = (¢ :
G — F,¢: F — G) of an element f € S; = k[zy,...,z,] and another (2-fold) factorization
Y =(¢:G — F ¢ : F — G)of g€ Sy =Kk[ys,...,ys], the tensor product X®Y is a

matrix factorization of f +¢g € S = k[z1,..., 2., y1,...,ys] given by the formula

N pRlg leg®¢ YRl —1lp®¢
XQY = : € MF%(f + 9).

-1p®Y" Y1p le®y' ©o®1p
This construction is a generalization of the functors introduced by Knérrer to study the
relationship between a hypersurface and its double branched cover (see [Kno87, Section 2]).
In this chapter we build upon the work of Knérrer [Kno87] and Yoshino [Yos98] by
defining a tensor product of matrix factorizations with d factors. To do so, we will use a
construction given by Bliser-Eisenbud-Schreyer [BES17, Proposition 2.1]. We also study
basic properties of the construction and provide some criteria for when it preserves indecom-

posability.

6.1 Definition

Throughout this chapter we will use the following notation.

Notation 6.1.1. Let k be a field and fix an integer d > 2. Let Sy = k[z] = k[x1, 2o, ..., x,],
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Se = k[y] = k[y1,y2,---,us], and S = k[z,y] = k[z1, 22, ..., 20, 41,92, ..., ys]. Fix non-
zero non-invertible elements f € S; and g € Sy, Let X = (¢1 : Fo — Fi,p9 @ F3 —
Fo..oipq - FI — Fy) € MFdsl(f) be of size n and Y = (¢ : Gy — Gy,¢9 @ Gz —
Go,...,10q: G1 — Gy) € MFdS2 (g9) be of size m. Assume 21, 23, . .., zq are elements of k such
that H;l:l(z —zj) = 2% —a where a = 1 if d is odd and a = —1 if d is even.

For a homomorphism of S-modules g : M — N and finite direct sum decompositions,
M = @; M; and N = P, N;, we let g(i,j) : M; — N; denote the ij component of g with

respect to the given direct sum decompositions.

Definition 6.1.2. For each k € Z4, use the same symbols ¢, : Fpi1 — F}, respectively
Vi + Grr1 — Gg, to denote the induced homomorphisms ¢ ® 1g @ Fry1 ®g, S — Fi ®g, S,
respectively ¢ ® 1g 1 Gpy1 ®s, S = Gi ®g, S. The amounts to considering ¢; and 1; as
matrices over S after picking bases. For each k € Zg, let Fj, = @jzl(Fkﬂ-_l@SGg_j) which is

a free S-module of rank dnm. Then, for k € Z4, we define a homomorphism &, : Frp.1 — Fi

o ® L, 0 0 0 . 2lm @ U
alp, @t or ® la, 0 0 o 0
By 0 2klp, @ Va1 Or2 ®@1g,, 0 . 0
0 0 0 - . 0

0 0 0 2klp_, @Y or1 ® lg,

Let X®Y = (Pq, oy, ..., Dy) be the tensor product of X and Y with respect to z1, 2o, . . ., 24.

Proposition 6.1.3. For any X € MF% (f) of sizen and Y € MFY, (g) of size m, the tensor

product X®Y is a matriz factorization of f + g of size dnm.

Proof. Since X is of size n we may assume ¢; : F' — F, 1 € Z4, where F' = S7'. Similarly,
since Y is of size m, we assume ¢; : G — G, j € Zgq, where G = S5, Let XRY = (P :
(FRsG) = (FRsG) ..., 04: (FRsG)? = (FRsG)Y) asin 6.1.2. We set A; = ¢; ®g 1g
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and B; = 1p ® ¢, for i,j € Zy and apply [BES17, Proposition 2.2] to see that

O Dy By = (A Ag+ (-1 aBy- - By) - Lpage

= (f(Ar®1g)+ (1) ag(lr ® 16)) - Lrgsa-

The statement and proof of [BES17, Proposition 2.2] is given in the case a = 1 but the proof
works equally well for @ = —1. By assumption, if d is odd, then a = 1 and (—1)%*a = 1.
If d is even, then @ = —1 and (—1)¥"la = 1. In either case we get that ®;---®; =
(f +9) - Lipggeye, that is, (P1,...,®4) € MF4(f + g) as desired. Since F ®g G is of rank

nm, the matrix factorization X®Y is of size dnm. n

Lemma 6.1.4. ForY € MFdS2 (9), the tensor product (—)®Y defines a functor MFdsl(f) —
MF%(f+g). Similarly, for X € MFS (f), X®(—) defines a functor MF$ (g) — MF4(f+g).

Proof. If a : X — X' is a morphism in MFél(f), where X' = (¢} : [y — F|,...,¢, : F| —

F}), then for Y € MF (g) we define a®1y in the following way: For each k € Zg, let

@ 1, 0 0
~ 0 a1 @ lg 0
(a®ly ), = . ! ‘ ' : Fr — Fy,
0 P ak—l ® 1G2

where F is as in (6.1.2) and F}, = @?:1(1%“4 ®g Ga—;). Then
O[@ly = ((a@ly)l, ey (O[@ly)d) : X@Y — X,®Y

forms a morphism of matrix factorizations in MFfé( f+g).

Similarly, if 8 : Y — Y’ is a morphism in MF¢ (g) and X € MF¢ (f), then we define
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1x®p by setting

lp,, ® B 0 0
— 0 1 ® B, :
(1x®P)k = . Fioes ¢ ‘ cFe — Fp
0 .. ]‘Fk ® @’2

for each k € Z4. Here F}! = @?:l(FkJrj,l ®s Gy_;). Then
1x®B = (1x®B)1, - .., (1x®B)4) : XBY — X®Y'

forms a morphism of matrix factorizations in MF%(f + g). O

Remark 6.1.5. If d = 2, then the functors (—)®Y and X®(—) are naturally isomorphic to
the functors defined by Yoshino. In particular, these functors are a further generalization of

the original functors defined by Knorrer (see [Yos98, Remark 1.3]).

Example 6.1.6. Consider the polynomial f = zyz +uvw € S = k[z,y, z,u,v,w]. Assume

there exists a primitive 3rd root of unity ¢ € k. Then we have a matrix factorization

xr 0 u y 0 &u z 0 &
(2,9, 2)@(u, v, w) = wy 0], |éw 2z 0],|w z 0 € MFL(f).
0 v =z 0 & «x 0 &v vy

Here, the tensor product is with respect to the ordering {1, £, £2}. It will follow from Theorem

6.3.6 that this matrix factorization is indecomposable.
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In the remaining sections, we will utilize the permutation matrix

00 0 1
1 0 00
C=10 1 00
00 -~ 10

to cyclically permute the columns and rows of matrices. It will be convenient to abuse
notation and multiply by C' on both the left and right of d x d block matrices as well as use
C to indicate the permutation of a given direct sum decomposition. More precisely, given a
direct sum of modules H = Hi ® Hy ®---® Hy we let C': H — C'H be the homomorphism
(hi,he, ..., hq) +— (hg,h1,...,hg_1), for h; € H;, where CH = H; ® Hi @& --- & Hy_;.
Furthermore, for any k € Zg4, we have C* : H — C*H where C*H = @?:1 Hj_y.

Let h : H — H' be a homomorphism where H = @;.l:l H; and H' = @, H. We

conjugate h by C in the following sense: For k € Z,, we have the composition
k —k
cr*H S HL B Es ot

The 75 component of this composition, with respect to the specified direct sum decomposi-

tions, is the (i + k)(j + k) component of the homomorphism h. That is,
C T hC¥(i,j) =h(i + k,j+ k) : Hjsp — Hl .

The main convenience of this notation comes in describing X®Y: Let X and Y be as
above. For k € Zg4, let
d

Ay = @(@k+j—1 ®1g, ;) Frn — Fi

J=1

112



and

d
B, = P, @ 1) : Fipr = C ' Fi
j=1
Then &), = A;, + 2,C B, so that
X@Y = (Al + Zchl, A2 + ZQCBQ, . ,Ad + ZdCBd) . (611)

6.2 Basic properties

Before proceeding we record some functorial properties of (—)®(—) which we will use below.
The first lemma, which follows by performing straightforward row and column operations,

shows that (—)®(—) is additive in both components.

Lemma 6.2.1. Let X, X' € MF{ (f) and Y € MF (g). There is an isomorphism (X &
XY 2 (XRY) @ (X'®Y). Similarly, for Y,Y' € MF% (f) and X € MF{, (f), there is an
isomorphism X®(Y @Y') = (X®Y) @ (X3Y"). O

Lemma 6.2.2. For any i € Z,, there is an isomorphism T'XQT 'Y =2 X®Y

Proof. Let X = (¢1 : F — F,....,pq: F — F) € MF{ (f), where F = S7, and Y =
(1 : G = G,...,0q: G = G) € MF{ (g), where G = S*. Let A be the block diagonal
matrix with (o1 ® 1g, 02 ® lg,..., 04 @ 1g) down the diagonal. Similarly let B be the
block diagonal matrix with (1p ® ¥g, 1p ® ¥g_1,...,1r ® ¥1) down the diagonal. Since
C*AC*k(i,i) = A(i + k,i + k) for each i,k € Zg, we have that Ay, = C*"1AC*~1. In other
words, conjugation by C' cyclically permutes the diagonal blocks of A. Using (6.1.1), we

have

X®Y = (A4 2,CB,C'AC 4 2,CB,C72AC? + %CB,...,C'"" " AC* ! + 2,CB).

Leti, k € Zg. Then T°X = (0i1, Qizas -+ i1, i) and T7Y = (Y14, 004, .01, 4).
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In particular, T'X®@T Y = (¥, P}, ... , @), where
itk ® g 0 0 0 2kl @ Y1y
2lr @Yy Qigr1 ® g 0 0 0
P — 0 2l @Y1 Qi ®1lg 0 0
k— .
0 0 0 R - 0
0 0 0 2l @Yoy Pipr—1 ® la,_,

Again, since conjugation by C' cyclically permutes the diagonal blocks, we have that

), = CTHCTFTACHNC + 4,C(CT'BCY)

= CTRHACTE T 4 5, OV BCY

Furthermore, notice that

C—i(c«—k-{—lACk—l + ZkCB) — C—i—k—l—lACk—l + chvl—iB

— (C—i—k-HACH—k—l + chl—zBCz)C—z

This implies that we have a commutative diagram with vertical isomorphisms:

(FoG) 245 (Foa)t 2 s (FoG)Y -2 (Foa)
P bl
/ @, ; ;
(Foo)r 2 (Foa) 24 ... 2, (Fea)d 2 (Fe o)
Hence, XQY = T'X®TY as desired. O

Definition 6.2.3. If (U, : Hy — Hy,..., Yy : H — H;) € MF%4(f + g), then the d-tuple

of homomorphisms (\111 ®s Ls/y)s -+ Va ®s 1gyqy ) forms a matrix factorization of f, where

now the k-th map is a S/(y) = S;-homomorphism Hy1 ®gS/(y) — Hi ® S/(y). Similarly,

for a morphism (v, . .., aq) € MF4(f + g), the tuple (1 ®s gy, - - - » 0 ®@s 1)) forms a

morphism in MF$ (f). Thus, we have defined a functor MF(f 4 g) — MF%1 (f). Following
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[Yos98], we call this functor reduction to S; = S/(y) and denote it (—),. In the same way,
we define the functor reduction to Sy 2 S/(z): (=), : MF4(f + g) — MF%, (g).

Lemma 6.2.4.

(i) Suppose Y € MF$ (g) is reduced and of size m. Then there is an isomorphism

(XRY), 2 X" (TX)" & (T*X)" @& (T X)™.

(ii) Suppose X € MFY (f) is reduced and of size n. Then there is an isomorphism

(XQY), 2 (V)@ (T e (T2 @ - @ (TY)"

Proof. We prove only (ii) since (i) follows directly from 6.1.2. Using the notation of (6.1.1),
we have that X®Y = (&, @y, ..., ;) where &, = A, + 2,CB;, for each k € Z;. We have a

commutative diagram of S-modules where each vertical map is an isomorphism:

2qC By 24-1CBg_1 23CB3

F1 > Fd > F3

ll]:l lz1~~-zd_1cd71 lzleCQ lle ll]:l

Fi —)Bd Cd_l]:d

1By ,C C3B;Cc—3" C2B,C—2 CB,C—1

We claim that, after reduction to S/(z), this diagram will give us the desired isomorphism
of matrix factorizations.

Since X is reduced, ¢ ® lg/;) = 0 for all & € Zy and therefore A, ® 1g/(,) = 0, also for
each k € Z,4. Therefore,

(X®Y), = (210B1 @ L), 220 B2 @ 1g)a), - - -, 24CBa @ g (a))-

Since the free S-modules Fy, ..., Fy are of rank n, we identify (15, ®1;) ® 1g/(») with ¥7,

the direct sum of n copies of v}, for all ¢,j € Z4. For each k € Z,4, consider the conjugate
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C*B,C~* of By. Since B, = @?:1(1Fj+k ® 11_;), we have that

d
(C*BLC™*), = C*BiC™ @ Lsyo) = P U1 4
j=1

Therefore,

d d d
(CB,C™Y),., (C*ByC ), ., (Ba)y) = (@ e, @zﬂ?j)
j=1 j=1 j=1

D-

(wg;ja Q/Jgfj? s 7¢IL7])

=1

<
|

(TH7Y)™.

&

1

J

Thus, tensoring the original diagram with S/(x) induces an isomorphism of matrix factor-

izations (X®Y), = @;l:l(Tl_jY)” as desired. O

Recall that f has finite d-MF type if the category MF%(f) has only finitely many non-
isomorphic indecomposable objects. From Lemma 6.2.4, we have a generalization of one

direction of Theorem 4.3.7.

Proposition 6.2.5. Suppose g € Sy is a monomial of degree at least d. Then, for any
X € MF{ (f), there exists Z € MF(f + g) such that X is isomorphic to a direct summand

of Z,. In particular, if f + g has finite d-MF type, then so does f.

Proof. Since g is a monomial in vy, ..., ys of degree at least d, there exists a reduced matrix
factorization Y € MF¢ (g) of size 1. For any X € MF (f), Lemma 6.2.4(i) implies that X
is isomorphic to a direct summand of (X®Y'),. Proceding as in the proof of Theorem 4.3.7,

the result follows. O
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6.2.1 Morphisms between tensor products

In the next section we will investigate the number of indecomposable summands of X®Y'.
To do so, we will work directly with idempotents in the endomorphism ring of X®Y". Here,
we introduce the notation needed to keep track of morphisms between tensor products of
matrix factorizations and we show how the functors (—), and (—), interact with morphisms
of this form.
Let X and Y be as in (6.1.1), X' = (¢} : Fy — F{,..., ¢, F{ — F}) € MF% (f), and
=@ Gy — G, Gy — GYy) € MFY (g).

Lemma 6.2.6. Assume Y is reduced of sizem and let a = (o, g, ..., 0q) : XY — X'RY
be a morphism in MF4(f + g). Set X'QY = (¥} : Fy — F,...,®, : F| — F), where
Fi = @jZI(F,;ﬂ_l ® Gaj), k € Zq. For each k € Zq, o, = (ag(i,7))ijen, = Fr — F}, where
ap(i, J) « Frqjo1 ®s Gaej = Fi ;1 ®g Gay is a homomorphism of free S-modules. Then,

after reduction to S/(y), we have a morphism

d

a, P (T x)" —>@ (771 x)™

q=1

and the pq component of o, with respect to this direct sum decomposition is the morphism
(1(p,9), 2(p, ), - -, aa(p, @)y« (TTHX)™ — (TP71X")™.

Proof. By Lemma 6.2.4(i), we have that (X®Y), = (@?:1 o7, @;l:l OFrs s @?21 gpg»”_l>
and (X'BY), = (@4 (6)" @@ @i ()™ Since (a1, (i.5) = (i, ),
(Fitj—1 ®s Ga—j)y = (Fi ;4 ®s Ga_j)y for each i, j, k € Zg, the morphism a, : (X@X\)Y)y —
(X'®Y), forces that ar (4, 7)yP k1 = (Pirk_1) " k+1(4,7),. Hence, we have a morphism

(a1(d,J)y, @24, 7)y, - -, ali, g)y) for all i, 5,k € Zy.
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The pg component of «, is given by the composition

(T9-1X)™ Tq—lx 2, @ TPIX)" s (TPLX)™

II@&

where the left most map is the natural inclusion and the right most map is the natural

projection. It follows that ay(p, q) = (1 (p, @)y, (D @)y, - - - a(p, q)y)- O

The tensor product X®Y puts the matrix factorization Y on the sub-diagonal (mod d) of
the block matrices ®;. For this reason, reduction mod z of a morphism 3 : X®Y — X®Y’
causes a “mixing” of the components of 5. This is in contrast with Lemma 6.2.4(i) where
we saw that reduction mod y is “diagonal”. We make this observation precise in the next

lemma.

Lemma 6.2.7. Assume X is reduced of size n and let B = (81, Ba, ..., 1) : XRY — XRY"
be a morphism in MFL(f + g). Set XQY' : (®, : Fy — Fi,...,®, : FI — F), where
Fi = @;l:l(Fkﬂ-_l ® Gy ), k € Zy. For each k € Zq, Br = (Bi(i, J))ijezy - Fr — Fi, where
Br(i,7) © Fryjo1 ®s Goj = Fiyio1 ®g Gh_; is a homomorphism of free S-modules. Then,

after reduction to S/(x), we have a morphism

d d
B @ (1Y) = @ (1Y)

p=1

induced by B., and the pg component of B, with respect to this direct sum decomposition is

the morphism

(Bl(pa Q)a 62(]7 - 1, q— 1), .. ,5d(p + 1, q+ 1))$ : (Tl—QY)n N (Tl—pyl)n‘

Proof. By Lemma 6.2.4(ii), there are isomorphisms & : (X®Y), — @zzl(Tlpr)” and
& (XRY), — @jzl(Tl_qY’)”. In particular, & = (17,210, 212202, ... 21+ 29 10471)

118



and & = (17, 21C, 2120C% . 2 2g1C%71). Set B, = £3.67". Then we have that

B = (B OB 0™ C2 (31,0 L 4 (3,0

since gl_l = (1-7:17 Zl_lcilv ceey (Zl s Zd)7107d+1).
Finally, the pg component of 3, : @;l:l (TY)" — @zzl (T'=PY")" with respect to the

given direct sum decomposition is

Be(p:q) = ((81)(p.0), C(B2):C 7 (9, q), - - -, C (Ba)C ™ (0, q))
= ((B)(, @), (B2)e(p —1,g = 1), ..., (Ba)u(p + 1,4 + 1))

6.3 Decomposability of tensor products

In this section, we investigate the number of indecomposable summands of X®Y. Many
of the results we present are extensions of ones found in [Yos98, §3]. In particular, we will
consider the tensor product X®Y in the extremal cases with respect to the order of X and
Y. In other words, we will consider the case when X = TX and Y = TY (Proposition 4.5.4)
and the case when both X and Y have order d (Theorem 6.3.6).

We continue using the notations 6.1.1. Our first result utilizes the following polynomial

identity:

Lemma 6.3.1. Let A and B be commuting variables and assume w € k is a primitive d-th

root of 1. Then

(A+B)(A4+wB)(A+w’B) - (A+w''B) = A+ (—1)4' B4
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6.3.1 The case of order one

Proposition 6.3.2. Assume k is an algebraically closed field with chark not dividing d, let
w € k be a primitive d-th root of 1, and let y € k be a d-th root of —1. Suppose X = TX

andY = TY . Then there exists Z € MF%(f + g) such that

XeYy = P1(2)

J€ELq

where the tensor product is taken with respect to z1, zs, ..., zq where

wht if d is odd
2k =

pwr=tif d is even

Proof. By Proposition 4.5.2, we may assume X = (¢, ,...,p) € MFgl(f) for some ¢ : F' —
F such that o = f-1p and Y = (¢,4,...,9) € Mng(g) for some ¢ : G — G such that
Y =g-1g. If dis odd, set B = 1p ®g v while if d is even, set B = pu(1p ®g1). In either
case, take A = ¢ ®g 1g. Since AB = BA, A = f - 1pgg, and (=1)1BY = g 1pgq, we

obtain a matrix factorization
Z=(A+B,A+wB, A+WB,...,A+w™B) e MF{(f + g)

from Lemma 6.3.1.

To finish the proof, we show that X®Y = Dz, T7(Z). Set H = F ®5 G and define
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0 0 0 -~ 0 1g
1y 0 0
y 0.0 -~ 0 0
0 wly 0
C=10 14 0 --- 0 0 |,andD=
0 0 wd_llH
0 0 0 0
Then
d—1 ~ o _ _ _
Priz) - <A+DB,A+wDB,...,A+wd‘1DB>
=0

and, using (6.1.1),
X®Y = <A+CJ§,A+WCB,...,[1+wd‘101§> :

Next we construct an isomorphism X®Y — EB;I;S T/(Z). Let a = 3, , D'C™". For

any k € Zg4, we have that

a(A+ W ICB) = (Z D’C"’) (fl + wk_10§>

1€Zq
— ZADZC—Z +wk—1BDicl—i

1€LG

since powers of C' and D commute with both A and B. On the other hand,

(A+w"'DB)a =3 AD'C 4+ W BDHC,
=
Since )., D'C'™" =37, D*'C™, it follows that the d-tuple (o, ..., a) forms a mor-
phism of matrix factorizations. Furthermore, « is an isomorphism with inverse é > 7y C—iD.

Hence, X®Y = @._, T9(Z) as desired. O

JELg
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We have a corollary to Proposition 6.3.2 in the setting of Section 4.1. In particular, we
assume k, w, and p are as in Proposition 6.3.2 and let f € S = k[x1,x9,...,2,]. Consider
the functor

Z&(—) : MF4(f) — MFdS[{zﬂ(f + 2%

where Z = (z,2,...,2) € MFﬁ[[Z]](zd) and ® is taken with respect to 21, 2o, . . ., 24 where

wh=1 if d is odd
Zr =

uwk=tif d is even

For a matrix factorization X = (1, ¢a,...,94) € MFL(f) and j € Zg, let cok;(X) =
cok ¢;. Notice that if Y € MFdSHZ]](f + 29), then cok;(Y) is an MCM R* = S[z]/(f + 2%)-

module for all 5 € Z,.

Corollary 6.3.3. For any N € MCM(R*) and k € Zg, there is an isomorphism of R*-
modules coky, (Z@)Nb) ~ N,

Proof. Let ¢ : N — N be the S-linear map representing multiplication by z on N. By

(4.1.4) we may choose

Nb o (_805 Py _90> if d is odd

(pto, p o, o pd o) if d s even.

Since TZ = Z and TN” = N°, Theorem 6.3.2 implies that there exists Z; € MngM(f + 29)
such that Z&N = @D,cz, T/ (Zy). Namely, from the proof of (6.3.2), we have that

d—1

Z():(21N_80721N—W907---721N—W 90)

where here we are identifying S[z] ®gp.; N with N and 1gp.) ®gp.] ¢ with ¢. Using the same

idea as in [Yos90, Lemma 12.2], cok(z1y — w*yp) is a free S-module for which multiplication
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by z is given by w*p. Equivalently, cok(z1y — w*¢) is an MCM R*-module isomorphic to
(6*)*N. Hence, cok,(Z&N?) = @D;cz,(07)*N which is isomorphic to N by Proposition

4.3.5. [l

6.3.2 Decomposability of reduced matrix factorizations

For the rest of this chapter, we restrict our attention to reduced matrix factorizations and

investigate the decomposability of X®Y in this case.

Notation 6.3.4. In addition to (6.1.1), we assume X and Y are indecomposable reduced
matrix factorizations of f and g respectively. We denote the number of indecomposable sum-
mands (counted with multiplicity) in the direct sum decomposition of X®Y by #(X®Y).

Set r = ged(m, n), where m is the size of X and n is the size of Y.
Theorem 6.3.5. The tensor product X®Y has at most dr indecomposable summands.

Proof. Let Z € MFL(f + g) be a summand of X®Y. By Lemma 6.2.4(i), Z, is a summand
of @?:l(Tj_lX)m. Since 791X is indecomposable for each j € Z,, the KRS property of
MFY (f) implies that Z, = @jzl(Tj_lX)” for some integers 0 < r; < m. Hence, the
size of Z,, which is the same as the size of Z, is (r; + --- + r4)n. Similarly, reduction to
S1 = S/(x) gives us that the size of Z is (s +- - - + s4)m for some integers 0 < s; < n. Thus,
(ry 4 -+ rg)n = (s, + - - + s4)m which must be at least lem(n, m) = nm/r. Since XQY
is of size dnm and we have just shown that any summand must be of size at least nm/r, it

follows that X®Y can have at most dr indecomposable summands. O
Theorem 6.3.6. Suppose X % T°X andY % TIY foralli,j # 0 € Zq. Then #(X®Y) < r.

The proof of Theorem 6.3.6 will require some preparation. First we recall the definition
and some basic properties of the radical of an additive category. Let C be a Krull-Schmidt
category, that is, an additive category such that every object decomposes into a finite sum

of objects which have local endomorphism rings. We refer the reader to [Kral4] for details.
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For objects X,Y € C, let
rade(X,Y) = {h € Hom¢(X,Y) : 1x — gh is invertible for all g € Hom¢(Y, X)}.

In particular, the Jacobson radical of End¢(X) coincides with rade(X, X). We recall two
useful facts about rade. Note that, while working with objects in the abstract category C,

our indices are not taken modulo d.
Lemma 6.3.7. Let X andY be objects in C.

(i) Suppose X = X" @ --- X" and Y =Y & --- &Y™ for indecomposable objects
X.,Y;, and positive integers n;,m;, for 1 < i < t,1 < j < s. Then rad(X,Y) =

rad(X, Y™ for each pair i, .
i.j it

(11) Suppose that X andY are indecomposable objects such that X 2Y. Thenrad(X™, Y™) =
Hom(X",Y™) for any n,m > 1. O

Lemma 6.3.8. Let X, ..., X, be indecomposable objects in C and X = X{" &---&X]™ for
positive integers ny, ..., ny,. Let e = (e(i,7)):; be an idempotent in End(X), where e(i, j) :
X7 — X[ Ife(i,k)e(k, j) € rad(X;7, X[") for all i, j, k where either i # k or j # k, then
there exist idempotents e; € End(X["), 1 <i <m, such that e(i,i) — e; € rad End(X") and
e(X) =@, e;(X]"), where e(X) denotes the direct summand of X given by the idempotent

€.

Proof. Since e = €2, for each 1 < i < m, we have that

e(i,i) =€*(i,i) =Y _e(i, k)e(k,q).

k=1

Since e(i, k)e(k, i) € rad End(X[") for all i # k by assumption, we have that

e(i,i)* = e(i,i) mod rad End(X").
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Since C is a Krull-Schmidt category, we may lift e(i,7) to an idempotent End(X;"), that
is, there exists an idempotent e; € End(X;") such that e(i,7) — e; € rad(X;", X"). Let
e=e Dey--Dey, € End(X) and v = e — e. Then we claim that 42 € rad End(X). To see

this, first notice that for each i,

V2(i,8) = e(i k)e(k, i) + (e(i i) — e;)* € rad(X]", X]").
k#i

Next, if i # j, then

Vi, 5) = (eli,i) — e)e(i, j) + e(i, ) (e(i, 4) —e) + > el k)e(k, j).
ki kA
Since rade is an ideal in the category C, the fact that e(7,7) —e; € rad(X]", X;"") implies that

(e(i,i)—e;)e(i, j) € rad(X}7, X"). Similarly, we have that e(é, j)(e(j, j)—e;) € rad(X;7, X[")

PRy
as well. Since the rest of the terms are in rad(X;-”,Xf") by assumption, we have that
v2(i,5) € rad(X;7, X;") for all ¢,j. Lemma 6.3.7(i) then implies that 4> € rad End(X) as
claimed.

We can now finish the proof of the lemma. Since v € rad End(X), we have that 1x—+? =
(Ix+7)(1x—=) is a unit in End(X). Hence, both (1x —~) and (1x ++) are units in End(X).

Note that since e and € are idempotents and v = e — ¢, we have the following:
(Ix+7)e=+ve=(e+y)e=ce=cele—7)=e—ey=re(lxy —7).

That is, e = (1x +7)e(1x — )" It follows that e(X) = ¢(X) = D", e;(X]"). O

If, in addition, the indecomposable objects X7, X5, ..., X,, are pairwise non-isomorphic,
then Lemma 6.3.7(ii) implies that the assumptions of the lemma are automatically satisfied.

With this, we are able to prove (6.3.6).

Proof of Theorem 6.3.6. Suppose e = (ey,...,eq) € End(X®Y) is an idempotent. The re-
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duction of e to Sy = S/(y) gives us an idempotent e, € End((X®Y),) = End(@zzl(qulX)m).

By Lemma 6.2.6, the pg component of e, is the morphism

(e1(p, @), 2(p, Q). - €a(p, @)y + (T X)™ — (TP X)™.

By assumption, the indecomposable matrix factorizations X, TX,T?X,...,T9 ' X are pair-
wise non-isomorphic. Hence, Lemma 6.3.8 implies that there exists idempotent endomor-

phisms e; of (T*"1X)™, i € Zy, such that
e,(i,1) —e; = (e1(i, 1), €2(4,9), . .., €qa(i, 7)), — e; € rad End((T" 1 X)™))

and ¢,(X®Y),) = @, e;((T"'X)™). Since TVX is indecomposable for all j € Zg,
B e (T X)) = @ (T'X)" for some 0 < r; < m. By Lemma A.1.3, we may

pick bases so that

1, 0 . | . .
e = . (Tzflxyi D (Tzflx)mfri SN (Tzflxyi D (Tzflxynfri’
0 0

where 1,, denotes the identity morphism (T°7'X)" — (T"7'X)". Since e,(i,i) —e; €

rad End((7"7'X)™), Lemma A.1.2 allows us to write
0 A

for some A; € rad End((7"7'X)™ ™). Then, again applying Lemma A.1.2, we have e, as
endomorphism of (@le(Ti_lX )”) b (@le(Ti_lX )m_”> described as
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for A € End <@f:1(Ti_1X )m_”> , where now 1 denotes the identity morphism on @7, (T X)".
Therefore, we have that e, (X®Y),) = @?:1(Ti*1X)” @ Image A. This implies that A =0
since e, (X®Y),) = @ (T 'X)". The diagonal components of A are Aj, ..., Ag, so

1. 0O

3

A = 0 implies that A; = 0 for all i as well. Thus, e,(i,i) = e; = for each i € Zg.
0 0

Recalling that e,(¢,7) = (€1(i,%)y, ..., €4(i,1),), we have that e(i,7), is the identity on the

first r; summands of (Fj4i—1 ®g Ga—;)y = F}7;_; and zero on the rest. It follows that
rank(eg(7,7) ®g k) = nr; for each k € Zjy. (6.3.1)

Next we consider the reduction of e to Sy = S/(z) and follow nearly identical steps. Since
Y,TY,...,T4'Y are pairwise non-isomorphic indecomposable matrix factorizations, we can
apply Lemma 6.3.8 to find idempotents €; € End((T*~"Y)"), for i € Zg4, such that e,(i,7) —
e, € rad End((T''Y)") and e,((X®Y),) = @, e/((T'~'Y)"). By picking bases as above,

we may write e, as an endomorphism of (EB?:l(Tl_iY)si) ) (@le(Tl_iY)”_si>, for some

1,, O
integers 0 < s; < n, to conclude that e, (i,i) = ¢, = | for each i. Now, since

0 O
ez(laz) = (61(7;72.)’ EQ(i - 177J - 1)a s 7€d(7; + 177J + 1))z : (Tl—iy)n - (Tl—iy)n’

we have that €,(i — k+ 1,9 — k + 1), is the identity on the first s; summands of (Fj;1 ®g

Gi—itk)e = GT_;,, and zero on the rest. It then follows that
rank(ex(i — k+ 1,i — k+ 1) ®5 k) = ms; for each k € Z,. (6.3.2)

Taking k = 1, we combine (6.3.1) and (6.3.2) to conclude that nr; = ms; for all i € Zj.
Taking k = 2, we find that ms; = rank(es(i — 1,7 — 1) ®g k) = nr;_; for all i € Z4. Thus,

MS| = Nry = MSy = Ny = --- = NTrq_1 = MsSg = nrq. In particular, ry =1y = -+ = 1y
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and s; = sy = --- = s4 which implies that the size of the matrix factorization e(X®Y) is

S % nr; = dnry which also equals Y27 ms; = dms;. It follows that the size of e(X®Y) is
d? d? d N
nm o _ T The matrix factorization X ®Y
ged(dn,dm)  dged(n,m) r

has size dnm and we have just shown that any summand has to have size at least dnm/r.

at least lem(dn, dm) =

So, #(X®Y) < dnm/(dnm/r) = r as desired. O
The next two results give specific situations in which X®Y" is indecomposable.

Proposition 6.3.9. Assume X =2 TX and Y = (uy,...,uq) is of size 1 with uy,...,uq

pairwise relatively prime elements in the mazimal ideal of Sy. Then X®Y is indecomposable.

Proof. Let i # j € Z4. Given a commutative diagram of the form

Us

Sy —— 5%

bk

52 S27

we have that a ®g, k = 0 = f ®g, k. To see this, assume a ®g, k # 0. Then any matrix
representing o has at least one unit entry. Since au,; = w;3, this would imply that u; € u;55,
contradicting the assumption that u; and u; have no common factors. The same holds for
B. As a consequence, any morphism (ay,...,qq) @ (T°Y)" — (T7Y)", with i # j, has
a ®s, k=0 for all k € Zg.

Set Z = X®Y and let e = (e1,...,€;) be an idempotent in End(Z). We want to show
that e = 0 or e = 1. First we consider the reduction of e to Sy = S/(x). We have that e, is
an idempotent on 7, = @Zzl(Tl_qY)”. Let 4,4,k € Zg with i # j. From Lemma 6.2.7 we

have that the (i + k& — 1)(j + k — 1) component of e, is the morphism

(El(i + k- 17] +k— 1)a s >Ek(i7j)7 ‘. .,Ed(i + kv] + k))m : (TQ_j_kY)n - (TQ_i_kY)n'
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Since i # j, we have that €,(7, j), ®s, k = 0 by the initial observation. It follows that
ex(i,j) ®s k=0 for all i, j, k € Z; with i # 7. (6.3.3)

Next, we consider the reduction of e to S; = S/(y) which gives us an idempotent e, on
Zy = @2:1 T91X since Y is of size 1. Since X = TX, each shift of X is isomorphic to X
and therefore Z, = X?. Since X is indecomposable, the ring A := End(X) & End(TX) &

-2 End(T% ! X) is local. Recall that for any i, j € Zg4, Lemma 6.2.6 gives us that

ey(t,7) = (€1(4, ), €2(4,7), .. ., €a(i, 7))y

If i # j, then (6.3.3) tells us that each of € (4,7),,...,€q(i,j), are non-isomorphisms of
free Si-modules. This implies that the morphism e, (4, j) is a non-isomorphism of matrix
factorizations. That is, e,(i,7) € rad A for all i # j, since A is a local ring. Hence,
ey(1,k)ey(k,j) € rad A for all triples 4, j, k such that k # ¢ or k # j. By Lemma 6.3.8,
the diagonal components e, (i, %) of e, will give idempotents in A/radA, which must be 0 or
1 in the quotient. In other words, since A is local, Lemma 6.3.8 tells us that each e, (i,1%) is
either an automorphism of X or an element of rad A.

First, assume e, (i,7) € rad A for all i € Z;. Combined with the previous paragraph, this
implies that all the components of e, are in rad A and therefore e, € rad End(Z,) by Lemma
6.3.7(1). An idempotent in the radical of End(Z,) must be zero and so we have that e, = 0.
Since e, = (€1, ..., €q)y, we have that (e;), = 0 for each k € Z,4. In particular, ¢, ®s k =0
for each k € Z,. Again, this implies that the idempotent €, must be 0 else the isomorphism
1 — €, would have a non-trivial kernel. Thus, e = 0 in this case.

Next, assume that at least one of the diagonal components is an automorphism, that is,
assume e, (ig, ip) is an automorphism of 7' X = X for some ig € Zgq. Lemma 6.2.6 tells
us that € (ig,%0), is an isomorphism of Sj-modules for each k € Z4. Since € (ig,i0) is an

isomorphism mod y, Nakayama’s Lemma implies that it must be an isomorphism. Hence,
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we have that

€x (10, %9) is and isomorphism for all k € Zg. (6.3.4)

To finish the proof, it suffices to show that € (7, j) is an isomorphism for each k, j € Z, since

then, combined with (6.3.3), we will have that each of the components €,...,¢e; of e are

isomorphisms. The idempotent e = (ey, ..., €4) will therefore be the identity as claimed.
Let k,j € Z4. In order to prove that €x(j, j) is an isomorphism, we consider reduction of

e to Sy = S/(x). In particular, consider the morphism
ex(k+j— 1 k+j—1): (T — (T*FIy)".

Since T?~*77Y is a matrix factorization of size 1, any endomorphism (83i, . .., 84) of T2~ k=Y )"

has the property that 8; = 3, for all 4, j € Z4. By Lemma 6.2.7,
ex(k+j—Lk+j—-1)=(e(k+j—1Lk+7—1),e(bk+j—2,k+j—2),....ealk+7.k+7))s

Thus, we have that €(j, 7). = €(k+j—t,k+j—1t), for all t € Z,. Taking t = k+ j —ig, we
have that €;(7, )z = €k+j—i, (%0, %)z By (6.3.4) and Nakayama’s Lemma, we conclude that

€x(J,7) is an isomorphism completing the proof. ]

Proposition 6.3.10. Suppose Y = (uy,...,uq) is of size 1. If X 2 T7X for all j # 0 € Zg,

then X®Y is indecomposable.

Proof. Let e = (e, ..., €q) be an idempotent in End(Z) where Z = X®Y. We want to show

e=0or e=1. By Lemma 6.2.4(i), reduction of e to S; = S/(y) gives us an idempotent

d d
e PTIX > PTX
q=1 q=1

Since X, TX,T?X, ..., T 1 X are pairwise non-isomorphic indecomposable matrix factoriza-

tions, rad(T"X, TV X) = Hom(T"X,T? X) for all i # j. Thus, e, (i, k)e,(k, j) € rad(T? ' X, T X)
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for all 7, j, k such that 7 # k or k # j. We can therefore apply Lemma 6.3.8 to e, to find
idempotents ey, ..., e, with e; € End(T"'X) such that e,(i,i) — e; € rad End(7°7'X) and
e,(Z,) = @le e;(T1X). Since T""'X is indecomposable, the idempotent e; is either 0 or
the identity on 7%"'X. As in the proof of Theorem 6.3.9, we consider two cases.

First, assume e; = 0 for all i € Zy. Then e,(4,7) € rad End(7%'X) for all i. This implies
that e,(i,j) € rad(T "' X, T ' X) for all 4,j € Z4 which, by Lemma 6.3.7(i), tells us that
e, € rad End(Z,). The idempotent e, must therefore be 0 and, again proceeding as in the
proof of 6.3.9, we find that e = 0 in this case.

Next, assume e;, is the identity on T 'X for some ig € Zg4. Since e, (ig,ig) — €;, €
rad End(T"'X), we have that e,(ip, %) is an automorphism of the matrix factorization
Tw=1X. Since

€y(7:0, Zo) = (61@0, io), Ce ,Ed(io, iO))y

by Lemma 6.2.6, we have that €4, i), is an isomorphism for all k& € Z,. By Nakayama’s
Lemma, the same is true of € (ig, i), and hence € (ig, ig)s, for all k € Zy.
Let j,k € Zg. We claim that €g(j,7) is an isomorphism. Since we already know that

ex(io,ig) is an isomorphism, assume j # iy. Consider the endomorphism of T?7*77Y
exlk+j—Lk+j—1)=(er(k+j—1k+j—1),ea(bk+7—2k+j—2),....calk+Jj,k+J))s

Since T?7*77Y is of size 1, we have that €;(j,j). = €;(k +j —t,k + j —t), for each t € Zy.
Taking t = k + j — iy, we find that €,(j,7)s = €r+ji,(f0,%), Which is an isomorphism.
Another application of Nakayama’s Lemma shows that €(7,7) is an isomorphism which
completes the proof of the claim.

Since € (7, j) is an isomorphism for all k, j € Z, it follows that e, (j, 7) is an automorphism
of T"-1X for each j € Z4. Since e,(i,7) € radEnd(Z,) for all i # j, we have that e,
is the sum of an automorphism of Z, and an element of rad End(Z,) implying that e, =

(€1,...,€q)y itself is an automorphism. Finally, (ex), being an isomorphism implies that
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is an isomorphism for each k € Z; and hence the idempotent e must be the identity. O]

Corollary 6.3.11. Assume d = p is prime and let g = y1y2---Yp € S2 = k[y1,y2, ..., yp]-
For any indecomposable reduced X € MFG (f), the tensor product X®(y1,ys, . .. L Yp) 1S

indecomposable.

Proof. Since p is prime, either X = TX or X 22 TX by Lemma 4.5.1. Applying Theo-
rem 6.3.9 if X =2 TX or Theorem 6.3.10 (or Theorem 6.3.6) if X 2 TX, we have that

X®(y1,9a, . .., ya) is indecomposable. ]

Using Theorem 6.3.10, we obtain an extension of the results in [Yos98, §3] for the case

d=2.

Corollary 6.3.12. Let d = 2 and assume that at least one of X orY is of size 1. Then

X®Y is decomposable if and only if X 2 TX andY = TY.

Proof. In the case d = 2, XV X YRX [Yos98, Lemma 2.1]. So, we may assume Y is of
size 1. If X 2 TX and Y = TY, then X®Y decomposes by [Yos98, Lemma 3.2] or by
Proposition 6.3.2 above.

Conversely, if Y 22 TY', then [Yos98, Theorem 3.7] implies that X ®Y is indecomposable.
On the other hand, if Y = TY but X 2% TX, then Theorem 6.3.10 implies that X®Y is

indecomposable. O
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A | Appendix

A.1 Idempotents

Let S be a regular local ring and d > 2. Fix a non-zero non-unit f € S. With the
additional assumption that S is complete, Section 3.1 implies that MF%(f) is a Krull-Schmidst
category and therefore, idempotents split in MF%(f). In this section, we give a normal form
for idempotents in MF%( f) without the assumption of completeness on S. In particular,

idempotents still split in this case.

Definition A.1.1. Let a € Homypa () (X, X') and § € Homypa ;) (Y,Y”). Then the mor-

phisms « and [ are equivalent if there exists a commutative diagram

X 25 X/

[l

y 2y

where y € Homypg (5 (X,Y) and 6 € Homypa ;) (X', Y”) are isomorphisms.

When applying invertible row and column operations to the matrices in matrix factoriza-
tion the options are limited in the following sense: Any invertible row operation applied to ¢y
must be met with the inverse column operation on ¢,_; if the d-tuple is to remain a matrix
factorization. The idea of the next lemma is to show that there are no restriction when it
comes to morphisms, that is, we may perform any invertible row or column operations on

the components of a morphism and obtain an equivalent morphism.

Lemma A.1.2. Let X, X' € MF%(f) and suppose a = (ay,...,aq4) € Homypq () (X, X').

For any k € Zg, replacing oy with PoagQ, for invertible matrices P, Q) of appropriate sizes,
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results in a morphism equivalent to c.

Proof. Let X = (p1 : Fy = F1,..., 04 F1 — Fy) be of size n, X' = (¢} : Fy — F,..., ¢}
F| — F)) be of size m, and let k € Z4. Let P : F| — S™ and @ : S" — Fj be S-

isomorphisms. Then we have a commutative diagram

Q oy Pr—1Q
Friq > S > Fr_1

lalvkl lPOékQ lak—l
’ SDI P—l
—

/
Fk+1

Set Y = (¢1,.. ., 0rk—1Q. Q ', ..., 0q) and Y = (1., P71 Py, ..., pq). Clearly,

Y,Y’ € MF¢(f). Furthermore, the commutative diagram above shows that
B =(ay,ag,...,PaQ,...,aq): Y =Y’

is a morphism of matrix factorizations.
Set ")/ = (1F17 ey 1Fk+17 Q_l, 1Fk—17 ey 1Fd) and (5 = (1F1’7 ey 1F}g+1’P’ 1F];_17 ceey 1le)
Then ~ € HomMFg(f)(X, Y), v € HomMFg(f)(X’,Y”, and we have that da = . Since

and ¢ are both isomorphisms we conclude that v and 3 are equivalent. n
The next lemma provides a normal form for idempotents in MF%( f).

Lemma A.1.3. Let X € MFL(f) be of sizen and e = (ey,...,eq) € Endyipa py(X) be an
tdempotent. Then there exists an integer 0 < r < n such that e is equivalent to a morphism

(€,€,...,€) where
I. 0O
€= ST ST 5 ST ST
0 0
In particular, there exists X' of size r and X" of size n — r such that X = X' & X"

Proof. If e = 0 or e = 1, there is nothing to prove so assume e # 0,1. Let k € Z,4. Since

e is an idempotent, €2 = ey, that is, the S-homomorphism ey, : Fy, — F} is an idempotent.
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Therefore, there exists invertible homomorphisms Py, () such that

Tk

0 0

PrepQr = STk ST s TR @y ST

for some 0 < 7, < n. Applying Lemma A.1.2 for all k& € Z; we may assume that

I, 0 I, 0 I,, 0
e= , e
0 0 0 0 0 0
for integers 0 < ry,7r9,...,7rq4 < n, and that @y : S+ G STkt — STk @ SPTTE,

To finish the proof, it suffices to show that r; = r;,1 for each ¢ € Zy4. So, let i € Z; and

consider the commutative diagram

ST @ g Pit1Pit2 Pi—1 Sritt @ §nTi Pi Sri @ §nTi

gri ® gn—ri Pit+1Pi42Pi—1 Gri+1 ® §n—Tit1 Pi Qi ) SnTi

Decompose ¢; and @; 1949 - - ;1 along these direct sum decompositions into

A B A B
PYi = and Q1P Pl =
C D ' D

) A B A B f-1. 0
Since (@;, Pit19i42 - - @i—1) € MFg(f), we have that =
C D c D 0 R -
A B A B f1., 0
and = . Since e;; = p;e;11 we have that B =0
"D C D 0 [T,

and C' = 0. Similarly, the commutativity of the left hand square above implies that B’ = 0

and C' = 0. This implies that AA’ = f-I,, and A’A = f - I, , which is only possible if

i+1

r; = 11 (cf. [Eis80, Corollary 5.4]).
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The final statement follows by decomposing ¢; along the direct sum decomposition ¢; :

STH ST — S" @ S" for all i where r is the common value r =1y =19 = -+ = ry. ]
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o AMS Fall Eastern Sectional Meeting, Binghamton University, 2019

o Route 81 Conference in Commutative Algebra and Algebraic Geometry, Queen’s University, 2019,
2021

o Annual New York State Regional Graduate Mathematics Conference, Syracuse University, annually

Awards, Grants, and Fellowships
AMS Travel Grant - J]MM

American Mathematical Society 2022
All-University Doctoral Prize

Syracuse University, Graduate School 2022
- University-wide award for superior achievement in completed dissertations

Kibbey Prize

Syracuse University, Mathematics Department 2022

- Departmental award for oustanding achievement in the PhD program

Outstanding Teaching Assistant Award

Syracuse University, Graduate School 2022
- University-wide award presented to 4% of teaching assistants annually

Graduate School Fellow

Syracuse University, Graduate School 2016-2017, 2019-2020
NSF Grant Support

Syracuse University, Mathematics Department 2018

- Received summer funding support from Professor Tadeusz Iwaniec’s NSF research grant.

Teaching Experience

My teaching evaluations are available here. The missing semesters are due to the fact that I was a
graduate fellow during the 2016-2017 and 2019-2020 academic years.

Instructor Of Record. ...

MAT 295: Calculus I

Syracuse University Fall 2021
MAT 296: Calculus II

Syracuse University Spring 2021, Fall 2020
MAT 284: Business Calculus

Syracuse University Summer 2020

MAT 194: Precalculus
Syracuse University Spring 2022, Summer 2019, Fall 2018



Graduate Teaching Assistant...............................

MAT 284: Business Calculus

Syracuse University Spring 2019
MAT 296: Calculus II
Syracuse University Spring 2018
MAT 183: Elements of Modern Mathematics
Syracuse University Fall 2017
Service/Outreach

AWM Treasurer
© Association for Women in Mathematics, Syracuse University Chapter Fall 2020, Spring 2021

Co-organized career development events for graduate students including

- A career panel of six female mathematicians in varying fields such as academia, private industry, and govern-
ment.

- A career preparation seminar led by faculty in the mathematics department.

Directed Reading Program Mentor
Syracuse University, Department of Mathematics Spring 2020, Fall 2020
Mentored two undergraduate students in semester-long independent reading projects

- Assigned weekly reading and exercises
- Supervised preparation of final presentations

Directed Reading Program Co-organizer

Syracuse University, Department of Mathematics Fall 2021, Spring 2022

- Redefined the standards for both undergraduate and graduate participation with the intention of increasing
overall participation in the program.

- Matched graduate students and undergraduate students based on the areas of expertise of the graduate students
and the areas of interest of the undergraduates.

First Year TA Mentor

Syracuse University, Department of Mathematics Summer 2019

- I'was appointed by the department to help first year graduate students prepare for their preliminary exam in
Algebra.

Professional Memberships

o Association for Women in Mathematics
o American Mathematical Society
o Mathematical Association of America
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