Matrix factorizations with more
than two factors
Tim Tribone Feb 20
University of Utah
Let S be a regular local ring.
Fix
$$f \in S$$
 (non-zero / non-unif
($S = C[[X_1, X_2, ..., X_n]]$)
Theme: Compare maximal Ghen-
Macaulay modules over
 $R = S/(f)$ and $R^{\ddagger} = \frac{S[Z]}{(f+Z^d)}$,
 $d \ge 2$.
(assume S is complete chark fd)

Def. A finitely generated module M over a local ring A is maximal Cohen-Macanlay (MCM) if depth M = dim A(For Gorenstein A, MCM = Gproj) For this talk: S --- R $\begin{array}{c} M \text{ is } M CM \iff pd_S M = 1\\ \text{over } R \end{array}$ Let MCM(A) = category of MCM A-modules. Why these modules? (1) (Buchweitz) For a Girenstein ring A,

$$\underline{MCM}(A) \simeq \underline{D^{b}(A)}_{Perf(A)}$$

$$\longrightarrow Homological perspective$$
(2) (Auslander) For an S-algebra A

$$\underline{MCM}(A) \text{ has } \iff A \text{ is an isolated}_{AR seguences} \qquad Singularity.$$

r ,

A local ring & has finite CM type if MCM(A) has only finitely many inde composable objects up to iso.

- Q: When does a local ring have finite CM type? Hard guestion.
- Theorem (Knörrer 87') d=2R has finite $\implies R^{\#} = \frac{S[\overline{z}]}{(\overline{f}+\overline{z}^2)}$ CM type has finite CM type.

Man Tool: Matrix factorizations.

Def. A matrix factorization of f is a pair of nxn matrices (4, 4) with entries in S s.t. y = f = f = f = 4.

Open Question: Given a polynomial f, What is the smallest possible size for a MF of f? Very few cases are Known!

Connection with MCM modules. Two observations (1) Given (4, 7) \in MF(f), both 4 and 7 are injective. $o \rightarrow S^n \xrightarrow{f} S^n \longrightarrow GKH \rightarrow o$ (2) $f(S^n) = 47(S^n) \leq ImP$

EX|
$$R = C[[x, y]](x^{2}y)$$
 is not
of finite $(M \text{ type.})$
[BGS 87'] For each $K \ge 1$
 $\left(\begin{pmatrix} Xy & y^{K+1} \\ o & -Xy \end{pmatrix}, \begin{pmatrix} X & y^{K} \\ o & -X \end{pmatrix}\right)$
is an indecomposable MF of $X^{2}y$.
Knörrer's Theorem:
 $R = \frac{3}{(f)}$ $\sigma : R^{\#} \longrightarrow R^{\#}$
 $R^{\#} = \frac{5[z]}{(f+z^{2})}$ $\sigma^{2} = I_{R^{\#}}$

Form the skew group algebra R#E0] · formal sums a+ bo, a, LER# • multiplication : a, b ∈ R# $(a \sigma^{i}) \cdot (b \cdot \sigma^{j}) = a \sigma^{i}(b) \cdot \sigma^{i+j}$ Thm (Knörrer 87') $MF(f) \simeq MCM(R^{\#}[\sigma])$ where MCM (R#[r]) = MCMR# () mod R#[r] $\left(R^{\#} \hookrightarrow R^{\#}[\sigma]\right)$

R finite
$$(---)$$
 R[#] finite
CM type $(---)$ R[#] finite
 $\int Eis \qquad \int Reifen \qquad Reidtmann$
MF(f) finite \longrightarrow R[#][σ] finite
type \qquad type

Examples.

(o)
$$d=3$$
, For any f
(f, 1, 1), (1, f, 1), (1, 1, f)
are $|x| = 3-61d$ MFs of f
(1) $f=xyz$, $(X, Y, Z) \in MF^{3}(xyZ)$
(2) $f=x^{3}+y^{4} \in C[x, y]$ and $w \in C$
is a primitive $3^{r^{4}}$ cot of 1 .
 $\begin{pmatrix} y^{2} \circ x \\ x & y \circ \\ 0 & x & y \end{pmatrix}, \begin{pmatrix} y & \circ \\ w x & y & \circ \\ 0 & w x & y \end{pmatrix}, \begin{pmatrix} y & \circ \\ w^{2}x & y & \circ \\ 0 & w^{2}x & y^{2} \end{pmatrix}$
is a $3x3 = 600$ MF of $x^{3}+y^{4}$.

has a 2-periodic projective resolution.

Thu (-)
$$d = a$$
, we Sa primitive
 $d^{th} \operatorname{root} \operatorname{of} I$
• $R = S/(f)$ • $\sigma : R^{\#} \longrightarrow R^{\#}$
 $s \longmapsto s$
• $R^{\#} = S[\overline{z}]$ $z \longmapsto \omega z$
 $(f + z^{d})$ $\sigma^{d} = 1_{R^{\#}}$
Form $R^{\#}[\sigma]$ similar to before.
Then
 $MF^{d}(f) \cong MCM(R^{\#}[\sigma])$
Where
 $MCM(R^{\#}[\sigma]) = \begin{cases} R^{\#}[\sigma] - modules \\ MCM over R^{\#} \end{cases}$

Idea of the proof:
Let
$$N \in MCM(R^{\#}ErJ)$$
. Then N is
 MCM over $R^{\#} \Longrightarrow f.g.$ free over S .
Let $\P: N \rightarrow N$ be multiplication by Z .
Pick an S -basis for N and write
 \P as an nxn matrix with entries in S .

Then
$$\varphi^{d} = \text{mult} \text{by } z^{d} = -f \cdot I_{n}$$

Get a MF of f
 $\approx (q, q, ..., q)$ with d factors.

Notice that this applies to any MCM R#-module.

(Lenschke, -) Let
$$N \in M \subset (R^{\#})$$

and $X \in MF^{d}(f)$.

$$N^{b} \stackrel{d-1}{=} \bigoplus_{i=0}^{d-1} (\sigma^{i})^{*} N$$
 and

$$\chi^{\#b} \cong \bigoplus_{i=1}^{d-1} \tau^i(\chi)$$

where

• $(\sigma^{i})^{*}N$ is the module obtained by restricting scalars along $\sigma^{i}: R^{*} \rightarrow R^{*}$

•
$$T^{i}(q_{1,1}q_{2,...},q_{d}) = (q_{i,1}q_{i+1,...},q_{i-1})$$

Theorem (Lenschke, -)

$$f$$
 has finite $\iff R^{\#} = \frac{S[\mp]}{(f+\Xi^{4})}$ has
 d -MF type finite CM type.

Connecting back to
$$MCM(R)$$

For $X = (\Psi_1, \Psi_2, ..., \Psi_d) \in MF^d(\varphi)$

epimorphism category
$$\ll - - \rightarrow MCM(R^{\#})$$

 $MCM(R)$
 \int
 \int
 $MF^{d}(F) \iff MCM(R^{\#}EF)$